A Machine Learning-Based Framework to Estimate the Lifetime of Network Line Cards

被引:3
|
作者
Herrera, Juan Luis [1 ]
Polverini, Marco [2 ]
Galan-Jimenez, Jaime [1 ]
机构
[1] Univ Extremadura, Dept Comp Syst & Telemat Engn, Badajoz, Spain
[2] Univ Rome Sapienza, DIET Dept, Rome, Italy
来源
NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE | 2020年
关键词
Machine Learning; line card; lifetime; estimation; QoS;
D O I
10.1109/noms47738.2020.9110455
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing tendency on data rates in forthcoming communication networks, availability is a crucial aspect to guarantee Quality of Service (QoS) requirements. The possibility of predicting the lifetime of networking hardware can be a key to improve the overall network QoS. This paper proposes a generic Machine Learning (ML) based framework that learns how to mimic the mathematical model behind the lifetime of network line cards. Results show that a good precision (85%) and recall (close to 100%) on the estimation can be achieved regardless the type of line cards the network is composed of.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Machine Learning-Based Bayesian Framework for Interval Estimate of Unsafe-Event Prediction in Construction
    Wu, Lingzi
    Mohamed, Emad
    Jafari, Parinaz
    AbouRizk, Simaan
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2023, 149 (11)
  • [2] Machine learning-based fatigue lifetime prediction of structural steels
    Arvanitis, Konstantinos
    Nikolakopoulos, Pantelis
    Pavlou, Dimitrios
    Farmanbar, Mina
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 125 : 55 - 66
  • [3] A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data
    Zhang, Yizhou
    Wik, Torsten
    Bergstrom, John
    Pecht, Michael
    Zou, Changfu
    JOURNAL OF POWER SOURCES, 2022, 526
  • [4] An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System
    De Carvalho Bertoli, Gustavo
    Pereira Junior, Lourenco Alves
    Saotome, Osamu
    Dos Santos, Aldri L.
    Verri, Filipe Alves Neto
    Marcondes, Cesar Augusto Cavalheiro
    Barbieri, Sidnei
    Rodrigues, Moises S.
    Parente De Oliveira, Jose M.
    IEEE ACCESS, 2021, 9 : 106790 - 106805
  • [5] Framework for Testing Robustness of Machine Learning-Based Classifiers
    Chuah, Joshua
    Kruger, Uwe
    Wang, Ge
    Yan, Pingkun
    Hahn, Juergen
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08):
  • [6] An efficient parallel machine learning-based blockchain framework
    Tsai, Chun-Wei
    Chen, Yi-Ping
    Tang, Tzu-Chieh
    Luo, Yu-Chen
    ICT EXPRESS, 2021, 7 (03): : 300 - 307
  • [7] Machine Learning-Based Energy-Saving Framework for Environmental States-Adaptive Wireless Sensor Network
    Kang, Jaewoong
    Kim, Jongmo
    Kim, Minhwan
    Sohn, Mye
    IEEE ACCESS, 2020, 8 : 69359 - 69367
  • [8] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [9] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [10] Machine Learning-Based Cybersecurity Framework for IoT Devices
    Arabelli, Rajeshwarrao
    Buradkar, Mrunalini
    Lakshmaji, Kotla
    Dube, Anand Prakash
    Shiba, Mary C.
    Geetha, B. T.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,