Minimal reduction type and the Kazhdan-Lusztig map

被引:3
|
作者
Yun, Zhiwei [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2021年 / 32卷 / 06期
关键词
Nilpotent orbits; Weyl group; Kazhdan-Lusztig map; Affine Springer fibers; CONJUGACY CLASSES; WEYL GROUP; REPRESENTATIONS;
D O I
10.1016/j.indag.2021.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of minimal reduction type of an affine Springer fiber, and use it to define a map from the set of conjugacy classes in the Weyl group to the set of nilpotent orbits. We show that this map is the same as the one defined by Lusztig in Lfromto, (2011) and that the Kazhdan-Lusztig map in Kazhdan and Lusztig, (1998) is a section of our map. This settles several conjectures in the literature. For classical groups, we prove more refined results by introducing and studying the "skeleta" of affine Springer fibers. (c) 2021 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1240 / 1274
页数:35
相关论文
共 50 条
  • [1] On Kazhdan-Lusztig cells in type B
    Bonnafe, Cedric
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 31 (01) : 53 - 82
  • [2] On Kazhdan-Lusztig cells in type B
    Cédric Bonnafé
    Journal of Algebraic Combinatorics, 2010, 31 : 53 - 82
  • [3] ON THE KAZHDAN-LUSZTIG CELLS IN TYPE E8
    Geck, Meinolf
    Halls, Abbie
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3029 - 3049
  • [4] Monodromy in Kazhdan-Lusztig cells in affine type A
    Chmutov, Michael
    Lewis, Joel Brewster
    Pylyavskyy, Pavlo
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1891 - 1949
  • [5] Quasisymmetric functions and Kazhdan-Lusztig polynomials
    Louis J. Billera
    Francesco Brenti
    Israel Journal of Mathematics, 2011, 184 : 317 - 348
  • [6] A Conjectural Extension of the Kazhdan-Lusztig Equivalence
    Gaitsgory, Dennis
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2021, 57 (3-4) : 1227 - 1376
  • [7] On the Kazhdan-Lusztig order on cells and families
    Geck, Meinolf
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) : 905 - 927
  • [8] RSK BASES AND KAZHDAN-LUSZTIG CELLS
    Raghavan, K. N.
    Samuel, Preena
    Subrahmanyam, K. V.
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (02) : 525 - 569
  • [9] Lower bounds for Kazhdan-Lusztig polynomials from patterns
    Sara C. Billey
    Tom Braden
    Transformation Groups, 2003, 8 : 321 - 332
  • [10] Geometric properties of the Kazhdan-Lusztig Schubert basis
    Lenart, Cristian
    Su, Changjian
    Zainoulline, Kirill
    Zhong, Changlong
    ALGEBRA & NUMBER THEORY, 2023, 17 (02) : 435 - 464