Bang-bang control design for quantum state transfer based on hyperspherical coordinates and optimal time-energy control

被引:17
作者
Zhou, Weiwei [1 ]
Schirmer, S. G. [2 ]
Zhang, Ming [1 ]
Dai, Hong-Yi [3 ]
机构
[1] Natl Univ Def Technol, Coll Mechatron & Automat, Dept Automat Control, Changsha 410073, Hunan, Peoples R China
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[3] Natl Univ Def Technol, Coll Sci, Dept Phys, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
FEEDBACK-CONTROL; LYAPUNOV CONTROL; SYSTEMS;
D O I
10.1088/1751-8113/44/10/105303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a constructive control scheme for solving quantum state engineering problems based on the parameterization of the state vector in terms of complex hyperspherical coordinates. Unlike many control schemes based on factorization of unitary operators, the scheme gives explicit expressions for all generalized Euler angles in terms of the hyperspherical coordinates of the initial and final states. The factorization, when applicable, has added benefits that phase rotations can be combined and performed concurrently. The control procedure can be realized using simple bang-bang or square-wavefunction controls. Optimal time-energy control is considered to find the optimal control amplitude. The extension of the scheme to implement arbitrary unitary operators is also discussed.
引用
收藏
页数:17
相关论文
共 53 条
[1]   Feedback stabilization of isospectral control systems on complex flag manifolds: Application to quantum ensembles [J].
Altafini, Claudio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (11) :2019-2028
[2]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[3]  
Blaquiere A., 1987, INFORM COMPLEXITY CO
[4]   On optimum Hamiltonians for state transformations [J].
Brody, DC ;
Hook, DW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (11) :L167-L170
[5]   On optimum Hamiltonians for state transformation (vol 39, pg L167, 2006) [J].
Brody, Dorje C. ;
Hook, Daniel W. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (35) :10949-10949
[6]   The canonical coset decomposition of unitary matrices through Householder transformations [J].
Cabrera, Renan ;
Strohecker, Traci ;
Rabitz, Herschel .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
[7]   Improving quantum gate fidelities using optimized Euler angles [J].
Chatzisavvas, K. Ch. ;
Chadzitaskos, G. ;
Daskaloyannis, C. ;
Schirmer, S. G. .
PHYSICAL REVIEW A, 2009, 80 (05)
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]   QUANTUM NONDEMOLITION FILTERS [J].
CLARK, JW ;
ONG, CK ;
TARN, TJ ;
HUANG, GM .
MATHEMATICAL SYSTEMS THEORY, 1985, 18 (01) :33-55
[10]  
D'Alessandro D, 2004, AUTOMATICA, V40, P1997, DOI 10.1016/j.automatica.2004.06.0