Stability of Filaments in Star-Forming Clouds and the Formation of Prestellar Cores in Them

被引:4
|
作者
Anathpindika, S. [1 ]
Freundlich, J. [2 ]
机构
[1] Indian Inst Sci, Bangalore 560012, Karnataka, India
[2] CNRS, Observ Paris, LERMA, F-75014 Paris, France
来源
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA | 2015年 / 32卷
关键词
gravitation; hydrodynamics; ISM: clouds; ISM: structure; prestellar cores; TURBULENT MAGNETIZED CLOUDS; INFRARED DARK CLOUDS; CLUSTER-FORMATION; GRAVITATIONAL COLLAPSE; MOLECULAR CLOUDS; INTERSTELLAR FILAMENTS; ISOTHERMAL FILAMENTS; CYLINDRICAL CLOUDS; DENSE CORES; FRAGMENTATION;
D O I
10.1017/pasa.2015.4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The exact process(es) that generate(s) dense filaments which then form prestellar cores within them is unclear. Here we study the formation of a dense filament using a relatively simple set-up of a pressure-confined, uniform-density cylinder. We examine if its propensity to form a dense filament and further, to the formation of prestellar cores along this filament, bears on the gravitational state of the initial volume of gas. We report a radial collapse leading to the formation of a dense filamentary cloud is likely when the initial volume of gas is at least critically stable (characterised by the approximate equality between the mass line-density for this volume and its maximum value). Though self-gravitating, this volume of gas, however, is not seen to be in free-fall. This post-collapse filament then fragments along its length due to the growth of a Jeans-like instability to form prestellar cores. We suggest dense filaments in typical star-forming clouds classified as gravitationally super-critical under the assumption of: (i) isothermality when in fact, they are not, and (ii) extended radial profiles as against pressure-truncated, that significantly over-estimates their mass line-density, are unlikely to experience gravitational free-fall. The radial density and temperature profile derived for this post-collapse filament is consistent with that deduced for typical filamentary clouds mapped in recent surveys of nearby star-forming regions.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Cosmological Evolution of Supergiant Star-Forming Clouds
    Ralph E. Pudritz
    Astrophysics and Space Science, 2002, 281 : 493 - 496
  • [32] Cosmological evolution of supergiant star-forming clouds
    Pudritz, RE
    ASTROPHYSICS AND SPACE SCIENCE, 2002, 281 (1-2) : 493 - 496
  • [33] Hayashi and the Thermal Physics of Star-Forming Clouds
    Larson, Richard B.
    FIRST STARS IV - FROM HAYASHI TO THE FUTURE, 2012, 1480 : 38 - 42
  • [34] Cosmological evolution of supergiant star-forming clouds
    Weil, ML
    Pudritz, RE
    ASTROPHYSICAL JOURNAL, 2001, 556 (01): : 164 - 176
  • [35] STAR FORMATION ACTIVITY OF CORES WITHIN INFRARED DARK CLOUDS
    Chambers, E. T.
    Jackson, J. M.
    Rathborne, J. M.
    Simon, R.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 181 (02): : 360 - 390
  • [36] Magnetic fields in star-forming molecular clouds. III. Submillimeter polarimetry of intermediate-mass cores and filaments in Orion B
    Matthews, BC
    Fiege, JD
    Moriarty-Schieven, G
    ASTROPHYSICAL JOURNAL, 2002, 569 (01): : 304 - 321
  • [37] CONNECTING THE DOTS: ANALYZING SYNTHETIC OBSERVATIONS OF STAR-FORMING CLUMPS IN MOLECULAR CLOUDS
    Ward, Rachel L.
    Wadsley, James
    Sills, Alison
    Petitclerc, Nicolas
    ASTROPHYSICAL JOURNAL, 2012, 756 (02):
  • [38] FROM MOLECULAR CLOUDS TO PRESTELLAR CORES: PHYSICS OF THE GRAVITATIONAL INFALL, FILAMENTS AND OPEN QUESTIONS
    Maury, A.
    EES2010: STAR FORMATION IN THE LOCAL UNIVERSE, 2011, 51 : 169 - 190
  • [39] Magnetic Stability of Massive Star-forming Clumps in RCW 106
    Tamaoki, Shohei
    Sugitani, Koji
    Quang Nguyen-Luong
    Nakamura, Fumitaka
    Kusune, Takayoshi
    Nagayama, Takahiro
    Watanabe, Makoto
    Nishiyama, Shogo
    Tamura, Motohide
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (02)
  • [40] GASTON: Galactic Star Formation with NIKA2-evidence for the mass growth of star-forming clumps
    Rigby, A. J.
    Peretto, N.
    Adam, R.
    Ade, P.
    Anderson, M.
    Andre, P.
    Andrianasolo, A.
    Aussel, H.
    Bacmann, A.
    Beelen, A.
    Benoit, A.
    Berta, S.
    Bourrion, O.
    Bracco, A.
    Calvo, M.
    Catalano, A.
    De Petris, M.
    Desert, F-X
    Doyle, S.
    Driessen, E. F. C.
    Garcia, P.
    Gomez, A.
    Goupy, J.
    Keruzore, F.
    Kramer, C.
    Ladjelate, B.
    Lagache, G.
    Leclercq, S.
    Lestrade, J-F
    Macias-Perez, J. F.
    Mauskopf, P.
    Mayet, F.
    Monfardini, A.
    Perotto, L.
    Pisano, G.
    Ponthieu, N.
    Reveret, V
    Ristorcelli, I
    Ritacco, A.
    Romero, C.
    Roussel, H.
    Ruppin, F.
    Schuster, K.
    Shu, S.
    Sievers, A.
    Tucker, C.
    Watkins, E. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 502 (03) : 4576 - 4596