On Data-driven Multi-Product Pricing

被引:0
作者
Wang, Tianyu [1 ]
Wu, Chenye [2 ,3 ]
Qi, Wei [4 ]
机构
[1] Tsinghua Univ, Sch Econ & Management, Beijing, Peoples R China
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
[3] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518129, Guangdong, Peoples R China
[4] McGill Univ, Desautels Fac Management, Montreal, PQ H3A 0G4, Canada
来源
2021 AMERICAN CONTROL CONFERENCE (ACC) | 2021年
关键词
Estimation; Optimization; Machine Learning; DEMAND;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To handle optimization with only historical data, we present a novel learning framework combining parametric estimation and pricing optimization in the multi-product pricing problem. Motivated by the existence of errors, we first introduce the task-based learning with decision bias for handling estimation errors, which can lead to better decision making under demand parameter uncertainty. Then, we follow the idea of model-free learning, which can design better revenue estimators without knowing the parameter structure to handle model misspecification. Furthermore, to design a more robust estimator, we incorporate the boosting idea to combine a number of estimators for more robust pricing. We validate the superior performance of this framework with numerical studies.
引用
收藏
页码:1553 / 1558
页数:6
相关论文
共 50 条
  • [41] A Multi-Product Newsvendor Problem with Budget and Loss Constraints
    Zhou, Yanju
    Chen, Xiaohong
    Xu, Xuanhua
    Yu, Changjun
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2015, 14 (05) : 1093 - 1110
  • [42] Multi-product dual sourcing problem with limited capacities
    Zhang, Bin
    Lai, Zekai
    Wang, Qiangqiang
    OPERATIONAL RESEARCH, 2021, 21 (03) : 2055 - 2075
  • [43] Data-Driven Selection of Land Product Validation Station Based on Machine Learning
    Li, Ruoxi
    Tao, Zui
    Zhou, Xiang
    Lv, Tingting
    Wang, Jin
    Xie, Futai
    Zhai, Mingjian
    REMOTE SENSING, 2022, 14 (04)
  • [44] Data-Driven Approach for Predictive Modeling of By-Product Formation in Methanol Synthesis
    Svitnic, Tibor
    Do, Nga T. Q.
    Schuhmann, Timm
    Renner, Thomas
    Haag, Stephane
    Oers, Evrim
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 505 - 510
  • [45] Analytical study on multi-product production planning with outsourcing
    Zhen, Lu
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (09) : 2100 - 2110
  • [46] Multi-Antenna Data-Driven Eavesdropping Attacks and Symbol-Level Precoding Countermeasures
    Mayouche, Abderrahmane
    Martins, Wallace A.
    Tsinos, Christos G.
    Chatzinotas, Symeon
    Ottersten, Bjorn Ottersten
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2021, 2 : 321 - 336
  • [47] Data-driven robust flexible personnel scheduling
    Wang, Zilu
    Luo, Zhixing
    Shen, Huaxiao
    COMPUTERS & OPERATIONS RESEARCH, 2025, 176
  • [48] Data-driven modeling and learning in science and engineering
    Montans, Francisco J.
    Chinesta, Francisco
    Gomez-Bombarelli, Rafael
    Kutz, J. Nathan
    COMPTES RENDUS MECANIQUE, 2019, 347 (11): : 845 - 855
  • [49] Data-driven approach for port resilience evaluation
    Gu, Bingmei
    Liu, Jiaguo
    Ye, Xiaoheng
    Gong, Yu
    Chen, Jihong
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2024, 186
  • [50] Data-driven Elicitation and Optimization of Dependencies between
    Deshpande, Gouri
    Arora, Chahal
    Ruhe, Guenther
    2019 27TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE 2019), 2019, : 416 - 421