Equivalence of local-best and global-best approximations in H(curl)

被引:2
作者
Chaumont-Frelet, Theophile [1 ,2 ]
Vohralik, Martin [3 ,4 ]
机构
[1] INRIA, 2004 Route Lucioles, F-06902 Valbonne, France
[2] Lab JA Dieudonne, Parc Valrose,28 Ave Valrose, F-06108 Nice, France
[3] INRIA, 2 Rue Simone Iff, F-75589 Paris, France
[4] Ecole Ponts, CERMICS, F-77455 Marne La Vallee, France
基金
欧洲研究理事会;
关键词
Sobolev space H(curl); Tangential trace continuity; Minimal regularity; Constrained approximation; Unconstrained approximation; A priori error estimate; A posteriori error estimate; Finite element method; Edge elements; FINITE-ELEMENT APPROXIMATION; ELECTROMAGNETIC-FIELDS; INTERPOLATION; BOUNDARY;
D O I
10.1007/s10092-021-00430-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive results on equivalence of piecewise polynomial approximations of a given function in the Sobolev space H(curl). We namely show that the global-best approximation of a given H(curl) function in a H(curl)-conforming piecewise polynomial space imposing the continuity of the tangential trace can be bounded above and below by the Hilbertian sum of the respective local approximations from the elementwise spaces without any inter-element continuity requirement. In other words, the approximation of a H(curl) function by tangential-trace-continuous and discontinuous piecewise polynomials has comparable precision. We consider approximations of the curl of the target function in the L-2-norm, as well as approximations of the target function in the L-2-norm with a constraint on the curl; in the latter case, the constraint is removed in the local approximations. These best-approximation localizations hold under the minimal H(curl) regularity, on arbitrary shape-regular tetrahedral meshes, and include imposition of conditions on a part of the boundary. They extend to the H(curl) context some recent results from the H-1 and H(div) spaces and have direct applications to a priori and a posteriori error analysis of numerical discretizations related to the H(curl) space, namely Maxwell's equations.
引用
收藏
页数:12
相关论文
共 36 条
[1]  
Adams R.A., 1975, SOBOLEV SPACES, V65
[2]  
[Anonymous], 2005, Multigrid, multilevel and multiscale methods
[3]  
[Anonymous], 2001, ISC0110MATH TEX A M
[4]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[5]   EACH H1/2-STABLE PROJECTION YIELDS CONVERGENCE AND QUASI-OPTIMALITY OF ADAPTIVE FEM WITH INHOMOGENEOUS DIRICHLET DATA IN Rd [J].
Aurada, M. ;
Feischl, M. ;
Kemetmueller, J. ;
Page, M. ;
Praetorius, D. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (04) :1207-1235
[6]   Some remarks on interpolation and best approximation [J].
Bank, Randolph E. ;
Ovall, Jeffrey S. .
NUMERISCHE MATHEMATIK, 2017, 137 (02) :289-302
[7]   A note on interpolation, best approximation, and the saturation property [J].
Bank, Randolph E. ;
Yserentant, Harry .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :199-203
[8]   Some further approximation properties of Nedelec finite elements, application to a posteriori analysis. [J].
Bernardi, Christine ;
Hecht, Frederic .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (07) :461-466
[9]  
Boffi D., 2013, MIXED FINITE ELEMENT
[10]  
Canuto C, 2017, NUMER MATH, V135, P1073, DOI 10.1007/s00211-016-0826-x