Twist deformations of the supersymmetric quantum mechanics

被引:5
|
作者
Castro, Paulo G. [1 ]
Chakraborty, Biswajit [1 ,2 ]
Kuznetsova, Zhanna [3 ]
Toppan, Francesco [1 ]
机构
[1] CBPF, BR-22290180 Rio De Janeiro, Brazil
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
[3] Univ Fed Abc, BR-09090400 Santo Andre, SP, Brazil
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2011年 / 9卷 / 03期
关键词
supersymmetric quantum mechanics; non-commutativity; Drinfeld twist; LORENTZ-INVARIANT; QUANTIZATION; FIELD; SPACETIME; SYMMETRY;
D O I
10.2478/s11534-010-0078-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The N-extended Supersymmetric Quantum Mechanics is deformed via an abelian twist which preserves the supre-Hopf algebra structure of its Universal Enveloping Superalgebra. Two constructions are possible. For even N one can identify teh 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist-deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed.
引用
收藏
页码:841 / 851
页数:11
相关论文
共 50 条
  • [21] Generalized Kahler Geometry in View of Supersymmetric Quantum Mechanics
    Wang, Yicao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1296 - 1304
  • [22] Higher dimensional supersymmetric quantum mechanics and Dirac equation
    Singh, LP
    Ram, B
    PRAMANA-JOURNAL OF PHYSICS, 2002, 58 (04): : 591 - 597
  • [23] Supersymmetric Quantum Mechanics and Super-Lichnerowicz Algebras
    K. Hallowell
    A. Waldron
    Communications in Mathematical Physics, 2008, 278 : 775 - 801
  • [24] Higher dimensional supersymmetric quantum mechanics and Dirac equation
    L P Singh
    B Ram
    Pramana, 2002, 58 : 591 - 597
  • [25] DIRAC OPERATOR ON COMPLEX MANIFOLDS AND SUPERSYMMETRIC QUANTUM MECHANICS
    Ivanov, E. A.
    Smilga, A. V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (25):
  • [26] Supersymmetric quantum mechanics for two-dimensional disk
    Suzuki, A
    Dutt, R
    Bhaduri, RK
    PRAMANA-JOURNAL OF PHYSICS, 2005, 65 (01): : 49 - 59
  • [27] Supersymmetric quantum mechanics in d-dimensional space
    Ruan, D
    Tu, CC
    Sun, HZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (03) : 477 - 480
  • [28] Supersymmetric quantum mechanics, multiphoton algebras and coherent states
    Garcia-Munoz, Juan D.
    Fernandez, C. David J.
    Vergara-Mendez, F.
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [29] From scalar field theories to supersymmetric quantum mechanics
    Bazeia, D.
    Bemfica, F. S.
    MODERN PHYSICS LETTERS A, 2017, 32 (12)
  • [30] Direct computational approach to lattice supersymmetric quantum mechanics
    Kadoh, Daisuke
    Nakayama, Katsumasa
    NUCLEAR PHYSICS B, 2018, 932 : 278 - 297