Convergence and Quasi-Optimality of an Adaptive Finite Element Method for Optimal Control Problems on Errors

被引:0
作者
Leng, Haitao [1 ]
Chen, Yanping [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 520631, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Convergence; Quasi-optimality; Optimal control problems; Adaptive finite element; L-2; error; STOKES EQUATIONS; APPROXIMATION; ALGORITHM;
D O I
10.1007/s10915-017-0425-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the convergence of an adaptive finite element method for optimal control problems on errors by keeping the meshes sufficiently mildly. In order to keep the meshes sufficiently mildly we need increasing the number of elements that are refined, moreover, we find that it will not compromise the quasi-optimality of the AFEM. In other words, we prove the quasi-optimality of the adaptive finite element algorithm in the present paper. In the end, we conclude this paper with some conclusions and future works.
引用
收藏
页码:438 / 458
页数:21
相关论文
共 32 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[4]   QUASI-OPTIMALITY OF ADAPTIVE NONCONFORMING FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS [J].
Becker, Roland ;
Mao, Shipeng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :970-991
[5]   A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY [J].
Becker, Roland ;
Mao, Shipeng ;
Shi, Zhongci .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4639-4659
[6]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[7]   Error reduction and convergence for an adaptive mixed finite element method [J].
Carstensen, Carsten ;
Hoppe, R. H. W. .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1033-1042
[8]   QUASI-OPTIMAL ADAPTIVE PSEUDOSTRESS APPROXIMATION OF THE STOKES EQUATIONS [J].
Carstensen, Carsten ;
Gallistl, Dietmar ;
Schedensack, Mira .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) :1715-1734
[9]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[10]   CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED FINITE ELEMENT METHODS [J].
Chen, Long ;
Holst, Michael ;
Xu, Jinchao .
MATHEMATICS OF COMPUTATION, 2009, 78 (265) :35-53