Space-time SUPG formulation of the shallow-water equations

被引:29
作者
Takase, Shinsuke
Kashiyama, Kazuo [1 ]
Tanaka, Seizo [2 ]
Tezduyar, Tayfun E. [3 ]
机构
[1] Chuo Univ, Dept Civil Engn, Bunkyo Ku, Tokyo 1128551, Japan
[2] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA
[3] Rice Univ, Dept Mech Engn, Houston, TX 77005 USA
关键词
shallow-water equations; finite element method; space-time method; SUPG formulation; shock-capturing parameter; FINITE-ELEMENT-METHOD; INCOMPRESSIBLE-FLOW COMPUTATIONS; ADVECTIVE-DIFFUSIVE SYSTEMS; INVISCID SUPERSONIC FLOWS; MOVING BOUNDARIES; COMPRESSIBLE FLOWS; STABILIZATION PARAMETERS; FLUID-DYNAMICS; INTERFACES; CYLINDERS;
D O I
10.1002/fld.2464
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new space-time SUPG formulation of the shallow-water equations. In this formulation, we use a stabilization parameter that was introduced for compressible flows and a new shock-capturing parameter. In the context of two test problems, we evaluate the performance of the new shock-capturing parameter. We also evaluate the performance of the space-time SUPG formulation compared to the semi-discrete SUPG formulation, where the system of semi-discrete equations is solved with the central-difference (Crank-Nicolson) time-integration algorithm. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:1379 / 1394
页数:16
相关论文
共 50 条
  • [21] Hydrostatic Upwind Schemes for Shallow-Water Equations
    Berthon, Christophe
    Foucher, Francoise
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 97 - 105
  • [22] A SLOPE MODIFICATION METHOD FOR SHALLOW-WATER EQUATIONS
    RAO, VS
    LATHA, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 14 (02) : 189 - 196
  • [23] Minimal intervention to simulations of shallow-water equations
    Pinilla, Camilo E.
    Bouhairie, Salem
    Tan, Lai-Wai
    Chu, Vincent H.
    JOURNAL OF HYDRO-ENVIRONMENT RESEARCH, 2010, 3 (04) : 201 - 207
  • [24] BREAKDOWN OF THE SLOW MANIFOLD IN THE SHALLOW-WATER EQUATIONS
    YAVNEH, I
    MCWILLIAMS, JC
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1994, 75 (2-4) : 131 - 161
  • [25] A Newmark space-time formulation in structural dynamics
    Bamer, Franz
    Shirafkan, Nima
    Cao, Xiaodan
    Oueslati, Abdelbacet
    Stoffel, Marcus
    de Saxce, Gery
    Markert, Bernd
    COMPUTATIONAL MECHANICS, 2021, 67 (05) : 1331 - 1348
  • [26] An Adaptive Wavelet Space-Time SUPG Method for Hyperbolic Conservation Laws
    Minbashian, Hadi
    Adibi, Hojatolah
    Dehghan, Mehdi
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 2062 - 2089
  • [27] Peer methods for the one-dimensional shallow-water equations with CWENO space discretization
    Steinebach, Gerd
    Weiner, Ruediger
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1567 - 1578
  • [28] A tsunami simulation of Hakata Bay using the viscous shallow-water equations
    Kanayama, Hiroshi
    Dan, Hiroshi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (03) : 605 - 624
  • [29] An adaptive space-time shock capturing method with high order wavelet bases for the system of shallow water equations
    Minbashian, Hadi
    Adibi, Hojatollah
    Dehghan, Mehdi
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (12) : 2842 - 2861
  • [30] Primal Formulation for Turbulent Stresses in Implicit Discontinuous Galerkin Shallow Water Equations
    Lee, Haegyun
    Lee, Namjoo
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 3606 - 3614