Semiparametric Estimation of First-Price Auctions with Risk-Averse Bidders

被引:74
|
作者
Campo, Sandra [1 ]
Guerre, Emmanuel [2 ]
Perrigne, Isabelle [3 ]
Vuong, Quang [3 ]
机构
[1] Univ N Carolina, Chapel Hill, NC 27515 USA
[2] Queen Mary Univ London, London, England
[3] Penn State Univ, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Risk aversion; Private value; Semiparametric identification; Semiparametric estimation; Optimal rate; Timber auctions; NONPARAMETRIC-ESTIMATION; MODELS; IDENTIFICATION;
D O I
10.1093/restud/rdq001
中图分类号
F [经济];
学科分类号
02 ;
摘要
In view of the non-identification of the first-price auction model with risk-averse bidders, this paper proposes some parametric identifying restrictions and a semiparametric estimator for the risk aversion parameter(s) and the latent distribution of private values. Specifically, we exploit heterogeneity across auctioned objects to establish semiparametric identification under a conditional quantile restriction of the bidders' private value distribution and a parameterization of the bidders' utility function. We develop a multistep semiparametric method and we show that our semiparametric estimator of the utility function parameter(s) converges at the optimal rate, which is slower than the parametric one but independent of the dimension of the exogenous variables thereby avoiding the curse of dimensionality. We then consider various extensions including a binding reserve price, affiliation among private values, and asymmetric bidders. The method is illustrated on U.S. Forest Service timber sales, and bidders' risk neutrality is rejected.
引用
收藏
页码:112 / 147
页数:36
相关论文
共 50 条