A singular problem with non-constant temperature - Steady states

被引:0
|
作者
Raczynski, A [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
D O I
10.1142/9789812702067_0061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system modelling the density and the temperature of a cloud of self-interacting particles. Besides the potential generated by self-gravitating particles we assume also the existence of the external potential. In the paper the existence and nonexistence of radially symmetric steady states in a ball is studied.
引用
收藏
页码:389 / 391
页数:3
相关论文
共 50 条
  • [1] Stability on large non-constant steady states of semiconductor equations
    Wu, Yunshun
    Wang, Yong
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (04)
  • [2] Non-constant positive steady states of the Sel'kov model
    Wang, MX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) : 600 - 620
  • [3] Non-constant steady states and Hopf bifurcation of a species interaction model
    Chen, Mengxin
    Wu, Ranchao
    Wang, Xiaohui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [4] Existence and bifurcation of non-constant positive steady states for a tumor–immune model
    Jingjing Wang
    Hongchan Zheng
    Yunfeng Jia
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [5] Non-constant steady states for the Lengyel-Epstein system with the CIMA reaction
    Ma, Manjun
    Tao, Jicheng
    Wu, Delin
    Han, Yazhou
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 19 - 23
  • [6] Non-constant Positive Steady States of the Epidemic Model with Non-monotonic Incidence Rate
    Shu-ling ZHA
    Bing-fang LI
    Xiu-xiang YANG
    Gai-zhu QU
    Acta Mathematicae Applicatae Sinica, 2015, 31 (03) : 783 - 798
  • [7] Non-constant Positive Steady States of the Epidemic Model with Non-monotonic Incidence Rate
    Zha, Shu-ling
    Li, Bing-fang
    Yang, Xiu-xiang
    Qu, Gai-zhu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 783 - 798
  • [8] Non-constant positive steady states of the epidemic model with non-monotonic incidence rate
    Shu-ling Zha
    Bing-fang Li
    Xiu-xiang Yang
    Gai-zhu Qu
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 783 - 798
  • [9] Non-constant positive steady-states of a predator-prey-mutualist model
    Chen, WY
    Wang, MX
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (02) : 243 - 254
  • [10] NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL
    CHEN WENYAN WANG MINGXIN Department of Mathematics
    ChineseAnnalsofMathematics, 2004, (02) : 243 - 254