Cubic AgMnSbTe3 Semiconductor with a High Thermoelectric Performance

被引:74
作者
Luo, Yubo [1 ]
Xu, Tian [1 ]
Ma, Zheng [1 ]
Zhang, Dan [2 ]
Guo, Zhongnan [3 ]
Jiang, Qinghui [1 ]
Yang, Junyou [1 ]
Yan, Qingyu [4 ]
Kanatzidis, Mercouri G. [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mold Technol, Wuhan 430074, Peoples R China
[2] Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
[3] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
ULTRALOW THERMAL-CONDUCTIVITY; MNTE; TEMPERATURE; FIGURE; MERIT; CHALCOGENIDES; BEHAVIOR; GETE;
D O I
10.1021/jacs.1c07522
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reaction of MnTe with AgSbTe2 in an equimolar ratio (ATMS) provides a new semiconductor, AgMnSbTe3. AgMnSbTe3 crystallizes in an average rock-salt NaCl structure with Ag, Mn, and Sb cations statistically occupying the Na sites. AgMnSbTe3 is a p-type semiconductor with a narrow optical band gap of similar to 0.36 eV. A pair distribution function analysis indicates that local distortions are associated with the location of the Ag atoms in the lattice. Density functional theory calculations suggest a specific electronic band structure with multi-peak valence band maxima prone to energy convergence. In addition, Ag2Te nanograins precipitate at grain boundaries of AgMnSbTe3. The energy offset of the valence band edge between AgMnSbTe3 and Ag2Te is similar to 0.05 eV, which implies that Ag2Te precipitates exhibit a negligible effect on the hole transmission. As a result, ATMS exhibits a high power factor of similar to 12.2 mu W cm(-1) K-2 at 823 K, ultralow lattice thermal conductivity of similar to 0.34 W m(-1) K-1 (823 K), high peak ZT of similar to 1.46 at 823 K, and high average ZT of similar to 0.87 in the temperature range of 400-823 K.
引用
收藏
页码:13990 / 13998
页数:9
相关论文
共 50 条
  • [1] High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High-Entropy Engineering
    Luo, Yubo
    Hao, Shiqiang
    Cai, Songting
    Slade, Tyler J.
    Luo, Zhong Zhen
    Dravid, Vinayak P.
    Wolverton, Chris
    Yan, Qingyu
    Kanatzidis, Mercouri G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (35) : 15187 - 15198
  • [2] Entropy-driven structural transition from Tetragonal to Cubic phase: High Thermoelectric Performance of CuCdInSe3 compound
    Luo, Tingting
    Hu, Yihao
    Liu, Shi
    Xia, Fanjie
    Qiu, Junhao
    Peng, Haoyang
    Liu, Keke
    Guo, Quansheng
    Li, XingZhong
    Yang, Dongwang
    Su, Xianli
    Wu, Jinsong
    Tang, Xinfeng
    MATERIALS TODAY PHYSICS, 2023, 37
  • [3] Semiconductor glass with superior flexibility and high room temperature thermoelectric performance
    He, Shiyang
    Li, Yongbo
    Liu, Lu
    Jiang, Ying
    Feng, Jingjing
    Zhu, Wei
    Zhang, Jiye
    Dong, Zirui
    Deng, Yuan
    Luo, Jun
    Zhang, Wenqing
    Chen, Gang
    SCIENCE ADVANCES, 2020, 6 (15)
  • [4] Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe3
    Sarkar, Debattam
    Dolui, Kapildeb
    Taneja, Vaishali
    Ahad, Abdul
    Dutta, Moinak
    Manjunatha, S. O.
    Swain, Diptikanta
    Biswas, Kanishka
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (40)
  • [5] High thermoelectric performance in cubic inorganic halide perovskite material AgCdX3 (X = F and Cl) from first principles
    Singh, Janpreet
    Kaur, Harpreet
    Singh, Gurinder
    Tripathi, Surya Kant
    MATERIALS TODAY ENERGY, 2021, 21
  • [6] High Entropy Semiconductor AgMnGeSbTe4 with Desirable Thermoelectric Performance
    Ma, Zheng
    Xu, Tian
    Li, Wang
    Cheng, Yiming
    Li, Jinmeng
    Zhang, Dan
    Jiang, Qinghui
    Luo, Yubo
    Yang, Junyou
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (30)
  • [7] High efficiency semimetal/semiconductor nanocomposite thermoelectric materials
    Zide, J. M. O.
    Bahk, J-H.
    Singh, R.
    Zebarjadi, M.
    Zeng, G.
    Lu, H.
    Feser, J. P.
    Xu, D.
    Singer, S. L.
    Bian, Z. X.
    Majumdar, A.
    Bowers, J. E.
    Shakouri, A.
    Gossard, A. C.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
  • [8] High thermoelectric performance of tellurium-free n-type AgBi1-xSbxSe2 with stable cubic structure enabled by entropy engineering
    Zhao, Ting
    Zhu, Huaxing
    Zhang, Bin
    Zheng, Sikang
    Li, Nanhai
    Wang, Guiwen
    Wang, Guoyu
    Lu, Xu
    Zhou, Xiaoyuan
    ACTA MATERIALIA, 2021, 220
  • [9] Towards a new chalcopyrite high-performance thermoelectric semiconductor Cu3InSnSe5 by entropy engineering
    Li, Wang
    Luo, Yubo
    Ma, Zheng
    Xu, Tian
    Wei, Yingchao
    Tao, Yang
    Qian, Yongxin
    Li, Chengjun
    Zeng, Xianwei
    Jiang, Qinghui
    Yang, Junyou
    ACTA MATERIALIA, 2023, 259
  • [10] High-performance lead-free cubic GeTe-based thermoelectric alloy
    Liu, Ming
    Zhu, Jianbo
    Cui, Bo
    Guo, Fengkai
    Liu, Zihang
    Zhu, Yuke
    Guo, Muchun
    Sun, Yuxin
    Zhang, Qian
    Zhang, Yongsheng
    Cai, Wei
    Sui, Jiehe
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (06):