A PLSR model to predict soil salinity using Sentinel-2 MSI data

被引:16
|
作者
Sahbeni, Ghada [1 ]
机构
[1] Eotvos Lorand Univ, Dept Geophys & Space Sci, Pazmany Peter Stny 1-A, H-1117 Budapest, Hungary
来源
OPEN GEOSCIENCES | 2021年 / 13卷 / 01期
关键词
soil salinity; Sentinel-2; MSI; PLSR; regression analysis; multispectral remote sensing; statistical modeling; the Great Hungarian Plain; SPECTRAL INDEXES; SALINIZATION; REGRESSION; LAND; BIOMASS; REGION; IMAGES;
D O I
10.1515/geo-2020-0286
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Salinization is one of the most widespread environmental threats in arid and semi-arid regions that occur either naturally or artificially within the soil. When exceeding the thresholds, salinity becomes a severe danger, damaging agricultural production, water and soil quality, biodiversity, and infrastructures. This study used spectral indices, including salinity and vegetation indices, Sentinel-2 MSI original bands, and DEM, to model soil salinity in the Great Hungarian Plain. Eighty-one soil samples in the upper 30 cm of the soil surface were collected from vegetated and nonvegetated areas by the Research Institute for Soil Sciences and Agricultural Chemistry (RISSAC). The sampling campaign of salinity monitoring was performed in the dry season to enhance salt spectral characteristics during its accumulation in the subsoil. Hence, applying a partial least squares regression (PLSR) between salt content (g/kg) and remotely sensed data manifested a highly moderate correlation with a coefficient of determination R-2 of 0.68, a p-value of 0.000017, and a root mean square error of 0.22. The final model can be deployed to highlight soil salinity levels in the study area and assist in understanding the efficacy of land management strategies.
引用
收藏
页码:977 / 987
页数:11
相关论文
共 50 条
  • [31] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [32] Inversing soil salinity under vegetation cover using Sentinel-2 multispectral satellite remote sensing
    Du R.
    Chen J.
    Zhang Z.
    Xu Y.
    Zhang X.
    Yin H.
    Yang N.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (17): : 107 - 115
  • [33] Sentinel-2 MSI and Sentinel-3 OLCI consistent ocean colour products using POLYMER
    Steinmetz, Francois
    Ramon, Didier
    REMOTE SENSING OF THE OPEN AND COASTAL OCEAN AND INLAND WATERS, 2018, 10778
  • [34] The inversion of arid-coastal cultivated soil salinity using explainable machine learning and Sentinel-2
    Jia, Pingping
    Zhang, Junhua
    Liang, Yanning
    Zhang, Sheng
    Jia, Keli
    Zhao, Xiaoning
    ECOLOGICAL INDICATORS, 2024, 166
  • [35] Monitoring urbanization and environmental impact in Kigali, Rwanda using Sentinel-2 MSI data and ecosystem service bundles
    Mugiraneza, Theodomir
    Hafner, Sebastian
    Haas, Jan
    Ban, Yifang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 109
  • [36] Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches
    Ge, Xiangyu
    Ding, Jianli
    Teng, Dexiong
    Wang, Jingzhe
    Huo, Tianci
    Jin, Xiaoye
    Wang, Jinjie
    He, Baozhong
    Han, Lijing
    CATENA, 2022, 212
  • [37] Method for Estimation of Oleic Acid Content in Soy Plants using Green Band Data of Sentinel-2/MSI
    Arai, Kohei
    Hideshima, Yoshitomo
    Iwaki, Yuuhi
    Ito, Ryota
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 56 - 63
  • [38] Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano
    Sirpa-Poma, J. W.
    Satge, F.
    Zola, R. Pillco
    Resongles, E.
    Perez-Flores, M.
    Colque, M. G. Flores
    Molina-Carpio, J.
    Ramos, O.
    Bonnet, M. -P.
    SUSTAINABILITY, 2024, 16 (14)
  • [39] Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. application to Leziria Grande, Portugal
    Ramos, Tiago B.
    Castanheira, Nadia
    Oliveira, Ana R.
    Paz, Ana Marta
    Darouich, Hanaa
    Simionesei, Lucian
    Farzamian, Mohammad
    Goncalves, Maria C.
    AGRICULTURAL WATER MANAGEMENT, 2020, 241
  • [40] Towards the Improvement of Soil Salinity Mapping in a Data-Scarce Context Using Sentinel-2 Images in Machine-Learning Models
    Sirpa-Poma, J. W.
    Satge, F.
    Resongles, E.
    Pillco-Zola, R.
    Molina-Carpio, J.
    Colque, M. G. Flores
    Ormachea, M.
    Pacheco Mollinedo, P.
    Bonnet, M. -p.
    SENSORS, 2023, 23 (23)