Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

被引:56
作者
Han, Seung Zeon [1 ]
Lim, Sung Hwan [2 ]
Kim, Sangshik [3 ]
Lee, Jehyun [4 ]
Goto, Masahiro [5 ]
Kim, Hyung Giun [6 ]
Han, Byungchan [7 ]
Kim, Kwang Ho [8 ]
机构
[1] Korea Inst Mat Sci, Struct Mat Div, Chang Won 642831, South Korea
[2] Kangwon Natl Univ, Dept Adv Mat Sci & Engn, Chunchon 200701, South Korea
[3] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol, ReCAPT, Chinju 660701, South Korea
[4] Changwon Natl Univ, Dept Mat Sci & Engn, Chang Won 641773, South Korea
[5] Oita Univ, Dept Mech Engn, Oita 8701192, Japan
[6] Korea Inst Ind Technol, Gangwon Reg Div, Kangnung 210340, South Korea
[7] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 120749, South Korea
[8] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
MECHANICAL-PROPERTIES; MICROSTRUCTURE;
D O I
10.1038/srep30907
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.
引用
收藏
页数:7
相关论文
共 30 条
[11]   The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging [J].
Lei, Q. ;
Li, Z. ;
Wang, M. P. ;
Zhang, L. ;
Xiao, Z. ;
Jia, Y. L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (24-25) :6728-6733
[12]   PRECIPITATE STRUCTURE IN A CU-NI-SI ALLOY [J].
LOCKYER, SA ;
NOBLE, FW .
JOURNAL OF MATERIALS SCIENCE, 1994, 29 (01) :218-226
[13]   Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale [J].
Lu, K. ;
Lu, L. ;
Suresh, S. .
SCIENCE, 2009, 324 (5925) :349-352
[14]   Ultrahigh strength and high electrical conductivity in copper [J].
Lu, L ;
Shen, YF ;
Chen, XH ;
Qian, LH ;
Lu, K .
SCIENCE, 2004, 304 (5669) :422-426
[15]   Low-temperature superplasticity in nanostructured nickel and metal alloys [J].
McFadden, SX ;
Mishra, RS ;
Valiev, RZ ;
Zhilyaev, AP ;
Mukherjee, AK .
NATURE, 1999, 398 (6729) :684-686
[16]   Microstructure and mechanical properties of Cu-Ni-Si alloys [J].
Monzen, Ryoichi ;
Watanabe, Chihiro .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 483-84 :117-119
[17]  
Porter DA., 1992, PHASE TRANSFORMATION, DOI [10.1007/978-1-4899-3051-4, DOI 10.1007/978-1-4899-3051-4]
[18]  
RDZAWSKI Z, 1993, MATER SCI TECH SER, V9, P142, DOI 10.1179/026708393790171836
[19]   Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J].
Saito, T ;
Furuta, T ;
Hwang, JH ;
Kuramoto, S ;
Nishino, K ;
Suzuki, N ;
Chen, R ;
Yamada, A ;
Ito, K ;
Seno, Y ;
Nonaka, T ;
Ikehata, H ;
Nagasako, N ;
Iwamoto, C ;
Ikuhara, Y ;
Sakuma, T .
SCIENCE, 2003, 300 (5618) :464-467
[20]  
Sato T., 2005, J JRICU, V44, P15