Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data

被引:63
作者
Shi, Qianqian [1 ]
Zhang, Chuanchao [1 ,2 ]
Peng, Minrui [1 ]
Yu, Xiangtian [1 ]
Zeng, Tao [1 ]
Liu, Juan [2 ]
Chen, Luonan [1 ]
机构
[1] Univ Chinese Acad Sci, Chinese Acad Sci,Key Lab Syst Biol, Shanghai Inst Biol Sci,CAS Ctr Excellence Mol Cel, Inst Biochem & Cell Biol,Innovat Ctr Cell Signali, Shanghai 200031, Peoples R China
[2] Wuhan Univ, Sch Comp, State Key Lab Software Engn, Wuhan 430072, Hubei, Peoples R China
基金
上海市自然科学基金;
关键词
RENAL-CELL CARCINOMA; INTEGRATIVE ANALYSIS; GENE-EXPRESSION; GENOMIC DATA; CANCER; DISCOVERY; MICRORNA; MODULES; ATLAS; MOUSE;
D O I
10.1093/bioinformatics/btx176
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Integrating different omics profiles is a challenging task, which provides a comprehensive way to understand complex diseases in a multi-view manner. One key for such an integration is to extract intrinsic patterns in concordance with data structures, so as to discover consistent information across various data types even with noise pollution. Thus, we proposed a novel framework called 'pattern fusion analysis' (PFA), which performs automated information alignment and bias correction, to fuse local sample-patterns (e.g. from each data type) into a global sample-pattern corresponding to phenotypes (e.g. across most data types). In particular, PFA can identify significant sample-patterns from different omics profiles by optimally adjusting the effects of each data type to the patterns, thereby alleviating the problems to process different platforms and different reliability levels of heterogeneous data. Results: To validate the effectiveness of our method, we first tested PFA on various synthetic data-sets, and found that PFA can not only capture the intrinsic sample clustering structures from the multi-omics data in contrast to the state-of-the-art methods, such as iClusterPlus, SNF and moCluster, but also provide an automatic weight-scheme to measure the corresponding contributions by data types or even samples. In addition, the computational results show that PFA can reveal shared and complementary sample-patterns across data types with distinct signal-to-noise ratios in Cancer Cell Line Encyclopedia (CCLE) datasets, and outperforms over other works at identifying clinically distinct cancer subtypes in The Cancer Genome Atlas (TCGA) datasets.
引用
收藏
页码:2706 / 2714
页数:9
相关论文
共 38 条
[11]   Integrating genetic and network analysis to characterize genes related to mouse weight [J].
Ghazalpour, Anatole ;
Doss, Sudheer ;
Zhang, Bin ;
Wang, Susanna ;
Plaisier, Christopher ;
Castellanos, Ruth ;
Brozell, Alec ;
Schadt, Eric E. ;
Drake, Thomas A. ;
Lusis, Aldons J. ;
Horvath, Steve .
PLOS GENETICS, 2006, 2 (08) :1182-1192
[12]   Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J].
Gygi, SP ;
Rist, B ;
Gerber, SA ;
Turecek, F ;
Gelb, MH ;
Aebersold, R .
NATURE BIOTECHNOLOGY, 1999, 17 (10) :994-999
[13]   Temporal relationship between cancers of the lung and upper aerodigestive tract [J].
Hsieh, WC ;
Chen, YM ;
Perng, RP .
JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 1997, 27 (02) :63-66
[14]   A modular approach for integrative analysis of large-scale gene-expression and drug-response data [J].
Kutalik, Zoltan ;
Beckmann, Jacques S. ;
Bergmann, Sven .
NATURE BIOTECHNOLOGY, 2008, 26 (05) :531-539
[15]   MicroRNAs in renal cell carcinoma: A systematic review of clinical implications (Review) [J].
Li, Ming ;
Wang, Ying ;
Song, Yongsheng ;
Bu, Renge ;
Yin, Bo ;
Fei, Xiang ;
Guo, Qizhen ;
Wu, Bin .
ONCOLOGY REPORTS, 2015, 33 (04) :1571-1578
[16]   Identifying multi-layer gene regulatory modules from multi-dimensional genomic data [J].
Li, Wenyuan ;
Zhang, Shihua ;
Liu, Chun-Chi ;
Zhou, Xianghong Jasmine .
BIOINFORMATICS, 2012, 28 (19) :2458-2466
[17]   Prognostic value of CD44 expression in renal cell carcinoma: a systematic review and meta-analysis [J].
Li, Xintao ;
Ma, Xin ;
Chen, Luyao ;
Gu, Liangyou ;
Zhang, Yu ;
Zhang, Fan ;
Ouyang, Yun ;
Gao, Yu ;
Huang, Qingbo ;
Zhang, Xu .
SCIENTIFIC REPORTS, 2015, 5
[18]   moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets [J].
Meng, Chen ;
Helm, Dominic ;
Frejno, Martin ;
Kuster, Bernhard .
JOURNAL OF PROTEOME RESEARCH, 2016, 15 (03) :755-765
[19]   Pattern discovery and cancer gene identification in integrated cancer genomic data [J].
Mo, Qianxing ;
Wang, Sijian ;
Seshan, Venkatraman E. ;
Olshen, Adam B. ;
Schultz, Nikolaus ;
Sander, Chris ;
Powers, R. Scott ;
Ladanyi, Marc ;
Shen, Ronglai .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (11) :4245-4250
[20]   A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy [J].
Nakagawa, Tohru ;
Kollmeyer, Thomas M. ;
Morlan, Bruce W. ;
Anderson, S. Keith ;
Bergstralh, Eric J. ;
Davis, Brian J. ;
Asmann, Yan W. ;
Klee, George G. ;
Ballman, Karla V. ;
Jenkins, Robert B. .
PLOS ONE, 2008, 3 (05)