Multiplicity of solutions for a class of Kirchhoff type equations with Hardy-Littlewood-Sobolev critical nonlinearity

被引:3
作者
Li, Anran [1 ]
Wang, Peiting [1 ]
Wei, Chongqing [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff type equations; Multiple solutions; Hardy-Littlewood-Sobolev critical nonlinearity; Variational methods; EXISTENCE;
D O I
10.1016/j.aml.2019.106105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Kirchhoff type equations with Hardy-Littlewood-Sobolev critical nonlinearity {-m(integral(Omega)vertical bar del u vertical bar(2)dx)Delta u = lambda f(x, u) + (integral(Omega)vertical bar u(y)vertical bar(2 mu)*/vertical bar x-y vertical bar(mu)dy)vertical bar u vertical bar(2 mu)*(-2)u, x is an element of Omega, u = 0, x is an element of partial derivative Omega, where N >= 3, Omega subset of R-N is a bounded smooth domain, 2(mu)* = 2N-mu/N-2, lambda, mu > 0 and m is a locally increasing positive function. The nonlinearity f is odd in the second variable and satisfies some quasi-critical growth conditions. For any given k is an element of N, k pairs of nontrivial solutions are got for lambda large enough via variational methods. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 11 条
  • [1] Multiple solutions for a Kirchhoff equation with critical growth
    Furtado, Marcelo F.
    de Oliveira, Luan D.
    da Silva, Joao Pablo P.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [2] Gao F., ARXIV171208264
  • [3] The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation
    Gao, Fashun
    Yang, Minbo
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) : 1219 - 1242
  • [4] On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents
    Gao, Fashun
    Yang, Minbo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1006 - 1041
  • [5] Kirchhoff G, 1883, VORLESUNGENUBER MATH
  • [6] Lieb E.H., 1997, GRADUATE STUDIES MAT, V14
  • [7] LIEB EH, 1977, STUD APPL MATH, V57, P93
  • [8] Lions J.L., 1978, On some questions in boundary value problems of mathematical physics, P284, DOI DOI 10.1016/S0304-0208(08)70870-3
  • [9] Rabinowitz P. H., 1984, CBMS REG C SERIES MA, V65
  • [10] Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
    Silva, EAB
    Xavier, MS
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (02): : 341 - 358