Multi-view group representation learning for location-aware group recommendation

被引:28
作者
Lyu, Ziyu
Yang, Min
Li, Hui
机构
[1] Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
[2] School of Informatics, Xiamen University
基金
中国国家自然科学基金;
关键词
Multi-view learning; Group recommendation; Location-aware recommendation; NETWORK;
D O I
10.1016/j.ins.2021.08.086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of location-based services (LBS), many location-based social sites like Foursquare and Plancast have emerged. People can organize and participate in group activities on those sites. Therefore, recommending venues for group activities is of practical value. However, the group decision making process is complicated, requiring trade-offs among group members. And the data sparsity and cold-start problems make it difficult to make effective group recommendation. In this manuscript, we propose a Multi-view Group Representation Learning (MGPL) framework for location-aware group recommendation. The proposed multi-view group representation learning framework can leverage multiple types of information for deep representation learning of group preferences and incorporate the spatial attributes of locations to further capture the group mobility preferences. Experiments on two real datasets Foursqaure and Plancast show that our method significantly outperforms the-state-of-art approaches. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:495 / 509
页数:15
相关论文
共 44 条
  • [1] Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    Adomavicius, G
    Tuzhilin, A
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) : 734 - 749
  • [2] Amer-Yahia S, 2009, PROC VLDB ENDOW, V2
  • [3] [Anonymous], 2016, ABS161001206 CORR
  • [4] Baltrunas L., 2010, P 4 ACM C REC SYST, P119, DOI [DOI 10.1145/1864708.1864733, DOI 10.1145/1864708.1864733.URL]
  • [5] Bengio Y., 2006, P ADV NEUR INF PROC, V19, P153, DOI [DOI 10.7551/MITPRESS/7503.003.0024, DOI 10.5555/2976456.2976476]
  • [6] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [7] Bronstein MM, 2010, PROC CVPR IEEE, P3594, DOI 10.1109/CVPR.2010.5539928
  • [8] Social-Enhanced Attentive Group Recommendation
    Cao, Da
    He, Xiangnan
    Miao, Lianhai
    Xiao, Guangyi
    Chen, Hao
    Xu, Jiao
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (03) : 1195 - 1209
  • [9] Attentive Group Recommendation
    Cao, Da
    He, Xiangnan
    Miao, Lianhai
    An, Yahui
    Yang, Chao
    Hong, Richang
    [J]. ACM/SIGIR PROCEEDINGS 2018, 2018, : 645 - 654
  • [10] Carmen M., 2015, RecSys LocalRec 2015: Proceedings of the Workshop on Location-Aware Recommendations Co-Located with the 9th ACM Conference on Recommender Systems, P1