Study of a generalized logistic equation with nonlocal reaction term

被引:0
作者
Zhou, Jianhua [1 ]
Gao, Ge [2 ]
Yan, Baoqiang [2 ]
机构
[1] Shandong Normal Univ, Life Sci Coll, Jinan, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Math Sci, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Logistic equation; Nonlocal term; Bifurcation method; Sub-supersolution method; Existence; KIRCHHOFF TYPE PROBLEMS; EXISTENCE; DIFFUSION; STABILITY;
D O I
10.1186/s13661-018-1066-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the generalized logistic equation with nonlocal reaction term -Delta u = u(lambda + b integral(Omega) u' dx-f(u)) in Omega, u > 0 in Omega, u = 0 on partial derivative Omega. Using the bifurcation and sub-supersolution method, we obtain the non-existence, existence, and uniqueness of positive solutions for different parameters on the nonlocal terms. Our works about the nonlocal elliptic problem improve the results in the previous literature.
引用
收藏
页数:20
相关论文
共 20 条
[1]   Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations [J].
Ackleh, AS ;
Ke, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) :3483-3492
[2]   Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method [J].
Alves, Claudianor O. ;
Covei, Dragos-Patru .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 23 :1-8
[3]   NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) :1-29
[4]   EXISTENCE AND STABILITY OF TRAVELING WAVES FOR LESLIE-GOWER PREDATOR-PREY SYSTEM WITH NONLOCAL DIFFUSION [J].
Cheng, Hongmei ;
Yuan, Rong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (10) :5433-5454
[5]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[6]  
Corrêa FJSA, 2011, ADV DIFFERENTIAL EQU, V16, P623
[7]  
Crandall M. G., 1971, J. Funct. Anal., V8, P321
[8]   On the symbiotic Lotka-Volterra model with diffusion and transport effects [J].
Delgado, M ;
López-Gómez, J ;
Suárez, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (01) :175-262
[9]   STUDY OF A LOGISTIC EQUATION WITH LOCAL AND NON-LOCAL REACTION TERMS [J].
Delgado, Manuel ;
Figueiredo, Giovany M. ;
Pimenta, Marcos T. O. ;
Suarez, Antonio .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (02) :693-713
[10]  
Freitas P., 1999, FIELDS I COMMUN, V21, P187