An Air-Stable Na3SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure

被引:231
作者
Wang, Hui [1 ]
Chen, Yan [2 ]
Hood, Zachary D. [1 ,3 ]
Sahu, Gayatri [1 ]
Pandian, Amaresh Samuthira [1 ]
Keum, Jong Kahk [1 ,2 ]
An, Ke [2 ]
Liang, Chengdu [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA
[3] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
air-stable materials; hard and soft acid and base theory (HSAB); ionic conductivity; solid-state sodium batteries; synthesis; GLASS-CERAMIC ELECTROLYTES; ROOM-TEMPERATURE; SODIUM BATTERIES; SCHLIPPES SALT; NEUTRON-DIFFRACTION; SOLID ELECTROLYTES; ENERGY-STORAGE; HYDROGEN-BONDS; X-RAY; NA;
D O I
10.1002/anie.201601546
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low-cost, and large-scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all-solid-state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low-cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide-based solid electrolytes. Design of the solid electrolyte Na3SbS4 is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm(-1) at 25 degrees C and ideal compatibility with a metallic sodium anode.
引用
收藏
页码:8551 / 8555
页数:5
相关论文
共 29 条
[1]   First In Situ Lattice Strains Measurements Under Load at VULCAN [J].
An, Ke ;
Skorpenske, Harley D. ;
Stoica, Alexandru D. ;
Ma, Dong ;
Wang, Xun-Li ;
Cakmak, Ercan .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (01) :95-99
[2]   Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4 [J].
Bo, Shou-Hang ;
Wang, Yan ;
Kim, Jae Chul ;
Richards, William Davidson ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2016, 28 (01) :252-258
[3]   Conductivity measurements on nasicon and nasicon-modified materials [J].
Bohnke, O ;
Ronchetti, S ;
Mazza, D .
SOLID STATE IONICS, 1999, 122 (1-4) :127-136
[4]   Origin of High Li+ Conduction in Doped Li7La3Zr2O12 Garnets [J].
Chen, Yan ;
Rangasamy, Ezhiylmurugan ;
Lang, Chengdu ;
An, Ke .
CHEMISTRY OF MATERIALS, 2015, 27 (16) :5491-5494
[5]   Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor [J].
Chen, Yan ;
Cai, Lu ;
Liu, Zengcai ;
dela Cruz, Clarina R. ;
Liang, Chengdu ;
An, Ke .
APPLIED PHYSICS LETTERS, 2015, 107 (01)
[6]   FAST NA+-ION TRANSPORT IN SKELETON STRUCTURES [J].
GOODENOUGH, JB ;
HONG, HYP ;
KAFALAS, JA .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :203-220
[7]   High sodium ion conductivity of glass ceramic electrolytes with cubic Na3PS4 [J].
Hayashi, Akitoshi ;
Noi, Kousuke ;
Tanibata, Naoto ;
Nagao, Motohiro ;
Tatsumisago, Masahiro .
JOURNAL OF POWER SOURCES, 2014, 258 :420-423
[8]   Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries [J].
Hayashi, Akitoshi ;
Noi, Kousuke ;
Sakuda, Atsushi ;
Tatsumisago, Masahiro .
NATURE COMMUNICATIONS, 2012, 3
[9]   Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes [J].
Hood, Zachary D. ;
Wang, Hui ;
Pandian, Amaresh Samuthira ;
Keum, Jong Kahk ;
Liang, Chengdu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (06) :1768-1771
[10]   High temperature sodium batteries: status, challenges and future trends [J].
Hueso, Karina B. ;
Armand, Michel ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :734-749