Error bounds for approximation in Chebyshev points

被引:75
作者
Xiang, Shuhuang [1 ]
Chen, Xiaojun [2 ]
Wang, Haiyong [1 ]
机构
[1] Cent S Univ, Dept Appl Math & Software, Changsha 410083, Hunan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
HIGHLY OSCILLATORY INTEGRALS; CLENSHAW-CURTIS; PRODUCT-INTEGRATION; QUADRATURE; IMPLEMENTATION; COMPUTATION; RULES;
D O I
10.1007/s00211-010-0309-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper improves error bounds for Gauss, Clenshaw-Curtis and Fej,r's first quadrature by using new error estimates for polynomial interpolation in Chebyshev points. We also derive convergence rates of Chebyshev interpolation polynomials of the first and second kind for numerical evaluation of highly oscillatory integrals. Preliminary numerical results show that the improved error bounds are reasonably sharp.
引用
收藏
页码:463 / 491
页数:29
相关论文
共 32 条
  • [1] PRODUCT INTEGRATION RULES AT CLENSHAW-CURTIS AND RELATED POINT - A ROBUST IMPLEMENTATION
    ADAM, G
    NOBILE, A
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (02) : 271 - 296
  • [2] [Anonymous], 2000, SIAM
  • [3] [Anonymous], 1964, HDB MATH FUNCTIONS
  • [4] [Anonymous], 2000, TABLES INTEGRALS SER
  • [5] [Anonymous], 1984, Methods of Numerical Integration
  • [6] Bernstein S., 1912, Mem. Cl. Sci. Acad. R. Belg, V4, P1
  • [7] Barycentric Lagrange interpolation
    Berrut, JP
    Trefethen, LN
    [J]. SIAM REVIEW, 2004, 46 (03) : 501 - 517
  • [8] Boyd JP, 2000, CHEBYSHEV FOURIER SP
  • [9] Dahlquist G., 2007, Numerical methods in scientific computing, VI.
  • [10] Complex Gaussian quadrature of oscillatory integrals
    Deano, Alfredo
    Huybrechs, Daan
    [J]. NUMERISCHE MATHEMATIK, 2009, 112 (02) : 197 - 219