On primitive elements of finite fields avoiding affine hyperplanes

被引:1
作者
Fernandes, Arthur [1 ]
Reis, Lucas [1 ]
机构
[1] Univ Fed Minas Gerais, UFMG, Dept Matemat, BR-30270901 Belo Horizonte, MG, Brazil
关键词
Finite fields; Primitive elements; Affine spaces; Character sums; DIGITS; SUM;
D O I
10.1016/j.ffa.2021.101911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 2 be an integer and let F-q be the finite field with q elements, where q is a prime power. Given F-q-affine hyperplanes A(1), . . . , A(n) of F-qn in general position, we study the existence and distribution of primitive elements of F-qn, avoiding each A(i). We obtain both asymptotic and concrete results, relating to past works on digits over finite fields. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] CM FIELDS WITHOUT UNIT-PRIMITIVE ELEMENTS
    Greither, Cornelius
    Zaimi, Toufik
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) : 398 - 399
  • [32] On special pairs of primitive elements over a finite field
    Carvalho, Cicero
    Guardieiro, Joao Paulo
    Neumann, Victor G. L.
    Tizziotti, Guilherme
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
  • [33] Additive polynomials and primitive roots over finite fields
    Özbudak, F
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 987 - 991
  • [34] On the sum of digits of special sequences in finite fields
    Cathy Swaenepoel
    Monatshefte für Mathematik, 2018, 187 : 705 - 728
  • [35] On the sum of digits of special sequences in finite fields
    Swaenepoel, Cathy
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 705 - 728
  • [36] SK1 of affine curves over finite fields
    Nestler, A
    JOURNAL OF ALGEBRA, 2000, 225 (02) : 943 - 946
  • [37] Existence of primitive pairs with prescribed traces over finite fields
    Sharma, Hariom
    Sharma, R. K.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1773 - 1780
  • [38] ELEMENTS OF LARGE ORDER IN PRIME FINITE FIELDS
    Chang, Mei-Chu
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (01) : 169 - 176
  • [39] Subspace code based on flats in affine space over finite fields
    Niu, Min-Yao
    Wang, Gang
    Gao, You
    Fu, Fang-Wei
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (06)
  • [40] On arithmetic progressions in finite fields
    Lemos, Abilio
    Neumann, Victor G. L.
    Ribas, Savio
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (06) : 2323 - 2346