New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable Zinc-Air Batteries

被引:24
作者
Cano, Zachary P. [1 ]
Park, Moon Gyu [1 ]
Lee, Dong Un [1 ,2 ]
Fu, Jing [1 ]
Liu, Hao [1 ]
Fowler, Michael [1 ]
Cheng, Zhongwei [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Stanford Univ, Dept Chem Engn, 450 Serra Mall, Stanford, CA 94305 USA
基金
加拿大自然科学与工程研究理事会;
关键词
CARBON-BLACK ANODES; EFFICIENT BIFUNCTIONAL ELECTROCATALYST; ALKALINE SECONDARY BATTERIES; OXYGEN REDUCTION REACTION; GAS-DIFFUSION ELECTRODES; FUEL-CELLS; ZN-AIR; CATHODE CATALYSTS; ACETYLENE BLACK; FURNACE BLACKS;
D O I
10.1021/acs.jpcc.8b06243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable zinc-air batteries with high energy density, cycle life, and calendar life require corrosion-resistant support materials in the air electrode. Nickel-based air electrodes have shown promise in this regard as a substitute for conventional carbon-based air electrodes, but their performance in zinc-air batteries has not been studied in-depth. Specifically, the effect of the nickel (oxy)hydroxide passivating film on the electrode's catalytic performance and durability requires investigation. To fill this research gap, a method involving electrochemical estimation of the nickel (oxy)hydroxide film capacity was used to link the growth of the film to performance losses experienced on the air electrode after battery cycling. The main cause of voltage loss was the nickel (oxy)hydroxide film growing overtop of and inside the catalyst-coated nickel aggregates. This resulted in significant activation and mass transfer losses, where the latter losses were caused by the film growing overtop of the catalyst and accounted for at least 65% of the total voltage degradation at 10 mA cm(-2). Potential modifications to the electrode structure which could mitigate these voltage losses are discussed, including reducing the nickel particle aggregate size, using high-aspect ratio catalysts, and physically separating the catalyst and nickel particles with nonfilm-forming conductive additives.
引用
收藏
页码:20153 / 20166
页数:14
相关论文
共 50 条
  • [21] Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells
    Li, Longbin
    Tang, Xiannong
    Wu, Bing
    Huang, Bingyu
    Yuan, Kai
    Chen, Yiwang
    ADVANCED MATERIALS, 2024, 36 (13)
  • [22] New structures of thin air cathodes for zinc-air batteries
    Zhu, WH
    Poole, BA
    Cahela, DR
    Tatarchuk, BJ
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2003, 33 (01) : 29 - 36
  • [23] Progress on Bifunctional Carbon-Based Electrocatalysts for Rechargeable Zinc-Air Batteries Based on Voltage Difference Performance
    Song, Yijian
    Li, Weijie
    Zhang, Kai
    Han, Chao
    Pan, Anqiang
    ADVANCED ENERGY MATERIALS, 2024, 14 (07)
  • [24] Toward Flexible Zinc-Air Batteries with Self-Supported Air Electrodes
    Yang, Maomao
    Shu, Xinxin
    Pan, Wei
    Zhang, Jintao
    SMALL, 2021, 17 (48)
  • [25] Recent advances in zinc-air batteries
    Li, Yanguang
    Dai, Hongjie
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (15) : 5257 - 5275
  • [26] Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack
    Ma, Hongyun
    Wang, Baoguo
    Fan, Yongsheng
    Hong, Weichen
    ENERGIES, 2014, 7 (10): : 6549 - 6557
  • [27] Durable Freestanding Hierarchical Porous Electrode for Rechargeable Zinc-Air Batteries
    Cai, Xiaoyi
    Lai, Linfei
    Zhou, Lijun
    Shen, Zexiang
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (02) : 1505 - 1516
  • [28] The Recent Advancement of Graphene-Based Cathode Material for Rechargeable Zinc-Air Batteries
    Belete, Abrham Sendek
    Worku, Ababay Ketema
    Ayele, Delele Worku
    Assegie, Addisu Alemayehu
    Teshager, Minbale Admas
    PROCESSES, 2024, 12 (08)
  • [29] Manganese Oxide Catalyst Grown on Carbon Paper as an Air Cathode for High-Performance Rechargeable Zinc-Air Batteries
    Sumboja, Afriyanti
    Ge, Xiaoming
    Goh, F. W. Thomas
    Li, Bing
    Geng, Dongsheng
    Hor, T. S. Andy
    Zong, Yun
    Liu, Zhaolin
    CHEMPLUSCHEM, 2015, 80 (08): : 1341 - 1346
  • [30] Co Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Rechargeable Zinc-air Batteries
    Song, Lianghao
    Zhang, Jing
    Huang, Chengyu
    Zhao, Chenfei
    Yin, Xuemin
    Long, Hongli
    Liu, Yang
    Zhao, Yufeng
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (10)