New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable Zinc-Air Batteries

被引:24
|
作者
Cano, Zachary P. [1 ]
Park, Moon Gyu [1 ]
Lee, Dong Un [1 ,2 ]
Fu, Jing [1 ]
Liu, Hao [1 ]
Fowler, Michael [1 ]
Cheng, Zhongwei [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Stanford Univ, Dept Chem Engn, 450 Serra Mall, Stanford, CA 94305 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2018年 / 122卷 / 35期
基金
加拿大自然科学与工程研究理事会;
关键词
CARBON-BLACK ANODES; EFFICIENT BIFUNCTIONAL ELECTROCATALYST; ALKALINE SECONDARY BATTERIES; OXYGEN REDUCTION REACTION; GAS-DIFFUSION ELECTRODES; FUEL-CELLS; ZN-AIR; CATHODE CATALYSTS; ACETYLENE BLACK; FURNACE BLACKS;
D O I
10.1021/acs.jpcc.8b06243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable zinc-air batteries with high energy density, cycle life, and calendar life require corrosion-resistant support materials in the air electrode. Nickel-based air electrodes have shown promise in this regard as a substitute for conventional carbon-based air electrodes, but their performance in zinc-air batteries has not been studied in-depth. Specifically, the effect of the nickel (oxy)hydroxide passivating film on the electrode's catalytic performance and durability requires investigation. To fill this research gap, a method involving electrochemical estimation of the nickel (oxy)hydroxide film capacity was used to link the growth of the film to performance losses experienced on the air electrode after battery cycling. The main cause of voltage loss was the nickel (oxy)hydroxide film growing overtop of and inside the catalyst-coated nickel aggregates. This resulted in significant activation and mass transfer losses, where the latter losses were caused by the film growing overtop of the catalyst and accounted for at least 65% of the total voltage degradation at 10 mA cm(-2). Potential modifications to the electrode structure which could mitigate these voltage losses are discussed, including reducing the nickel particle aggregate size, using high-aspect ratio catalysts, and physically separating the catalyst and nickel particles with nonfilm-forming conductive additives.
引用
收藏
页码:20153 / 20166
页数:14
相关论文
共 50 条
  • [21] Effect of carbon properties on the electrochemical performance of carbon-based air electrodes for rechargeable zinc–air batteries
    Yu-Jeong Min
    Su-Jung Oh
    Min-Soo Kim
    Jeong-Hee Choi
    Seungwook Eom
    Journal of Applied Electrochemistry, 2018, 48 : 405 - 413
  • [22] Development of Stable Bifunctional Air Electrodes for Zinc-Air Flow Batteries
    Pichler, B.
    Weinberger, S.
    Rescec, L.
    Hacker, V
    SELECTED PROCEEDINGS FROM THE 232ND ECS MEETING, 2017, 80 (10): : 371 - 375
  • [23] Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries
    Li, Liangyu
    Tsang, Yung Chak Anson
    Xiao, Diwen
    Zhu, Guoyin
    Zhi, Chunyi
    Chen, Qing
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [24] Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries
    Khezri, Ramin
    Motlagh, Shiva Rezaei
    Etesami, Mohammad
    Mohamad, Ahmad Azmin
    Mahlendorf, Falko
    Somwangthanaroj, Anongnat
    Kheawhom, Soorathep
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [25] Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries
    Liangyu Li
    Yung Chak Anson Tsang
    Diwen Xiao
    Guoyin Zhu
    Chunyi Zhi
    Qing Chen
    Nature Communications, 13
  • [26] High Surface Nickel-based Air Electrode for Rechargeable Alkaline Metal-Air Batteries
    Bueker, F.
    Hertkorn, D.
    Mueller, C.
    Reinecke, H.
    ENERGY TECHNOLOGY/BATTERY-JOINT SESSION (GENERAL) - 224TH ECS MEETING, 2014, 58 (36): : 69 - 74
  • [27] Towards rechargeable zinc-air batteries with aqueous chloride electrolytes
    Clark, Simon
    Mainar, Aroa R.
    Iruin, Elena
    Colmenares, Luis C.
    Blazquez, J. Alberto
    Tolchard, Julian R.
    Latz, Arnulf
    Horstmann, Birger
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) : 11387 - 11399
  • [28] Rechargeable zinc-air batteries: a promising way to green energy
    Gu, Peng
    Zheng, Mingbo
    Zhao, Qunxing
    Xiao, Xiao
    Xue, Huaiguo
    Pang, Huan
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (17) : 7651 - 7666
  • [29] Recent Advances in Electrode Design for Rechargeable Zinc-Air Batteries
    Chang, Jinfa
    Wang, Guanzhi
    Yang, Yang
    SMALL SCIENCE, 2021, 1 (10):
  • [30] Exploring innovative trends and advancements in rechargeable zinc-air batteries
    Ahmed, Sheraz
    Ali, Awais
    Asif, Muhammad
    Shim, Joongpyo
    Park, Gyungse
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 170