Cellulose-silica aerogels

被引:137
作者
Demilecamps, Arnaud [1 ]
Beauger, Christian [2 ]
Hildenbrand, Claudia [2 ]
Rigacci, Arnaud [2 ]
Budtova, Tatiana [1 ]
机构
[1] PSL Res Univ, MINES ParisTech, CEMEF, CS 10207, F-06904 Sophia Antipolis, France
[2] PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Energies Renouvelables & Syst Ene, CS 10207, F-06904 Sophia Antipolis, France
关键词
Aerogels; Cellulose; Silica; Nanostructured composites; Specific surface area; Thermal conductivity; MECHANICAL-PROPERTIES; BACTERIAL CELLULOSE; ORGANIC AEROGELS; DENSITY;
D O I
10.1016/j.carbpol.2015.01.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Aerogels based on interpenetrated cellulose silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 44 条
[1]   The preparation of lignocellulosic aerogels from ionic liquid solutions [J].
Aaltonen, Olli ;
Jauhiainen, Olli .
CARBOHYDRATE POLYMERS, 2009, 75 (01) :125-129
[2]  
Achard P., 2007, PROCEDE ELABORATION
[3]  
Aegerter MA, 2011, AEROGELS HDB
[4]   Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel [J].
Alaoui, Adil Hafidi ;
Woignier, Thierry ;
Scherer, George W. ;
Phalippou, Jean .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (40-41) :4556-4561
[5]   SKELETAL DENSITY OF SILICA AEROGELS DETERMINED BY HELIUM PYCNOMETRY [J].
AYRAL, A ;
PHALIPPOU, J ;
WOIGNIER, T .
JOURNAL OF MATERIALS SCIENCE, 1992, 27 (05) :1166-1170
[6]   Effective thermal conductivity of divided silica xerogel beds [J].
Bisson, A ;
Rigacci, A ;
Lecomte, D ;
Achard, P .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 350 :379-384
[7]   Drying of silica gels to obtain aerogels: Phenomenology and basic techniques [J].
Bisson, A ;
Rigacci, A ;
Lecomte, D ;
Rodier, E ;
Achard, P .
DRYING TECHNOLOGY, 2003, 21 (04) :593-628
[8]  
Brinker C. J., 2013, SOL GEL SCI PHYS CHE, DOI [DOI 10.1016/B978-0-08-057103-4.50001-5, 10.1016/C2009-0-22386-5]
[9]   Palladium nanoparticles on polysaccharide-derived mesoporous materials and their catalytic performance in C-C coupling reactions [J].
Budarin, Vitaly L. ;
Clark, James H. ;
Luque, Rafael ;
Macquarrie, Duncan J. ;
White, Robin J. .
GREEN CHEMISTRY, 2008, 10 (04) :382-387
[10]   Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel [J].
Cai, Jie ;
Liu, Shilin ;
Feng, Jiao ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (09) :2076-2079