Compacting Deep Neural Networks for Internet of Things: Methods and Applications

被引:34
|
作者
Zhang, Ke [1 ,2 ,3 ]
Ying, Hanbo [3 ]
Dai, Hong-Ning [4 ]
Li, Lin [3 ]
Peng, Yuanyuan [1 ,2 ,3 ]
Guo, Keyi [5 ]
Yu, Hongfang [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sci & Technol Elect Informat Control Lab, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[4] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
[5] NYU, Courant Inst Math Sci, New York, NY 10003 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2021年 / 8卷 / 15期
关键词
Internet of Things; Biological system modeling; Knowledge engineering; Data models; Computational modeling; Neurons; Convolution; Deep learning (DL); deep neural networks (DNNs); Internet of Things (IoT); model compression; REINFORCEMENT LEARNING APPROACH; MODEL COMPRESSION; IOT; CLASSIFICATION; ACCELERATION; BLOCKCHAIN; ATTACKS;
D O I
10.1109/JIOT.2021.3063497
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks (DNNs) have shown great success in completing complex tasks. However, DNNs inevitably bring high computational cost and storage consumption due to the complexity of hierarchical structures, thereby hindering their wide deployment in Internet-of-Things (IoT) devices, which have limited computational capability and storage capacity. Therefore, it is a necessity to investigate the technologies to compact DNNs. Despite tremendous advances in compacting DNNs, few surveys summarize compacting-DNNs technologies, especially for IoT applications. Hence, this article presents a comprehensive study on compacting-DNNs technologies. We categorize compacting-DNNs technologies into three major types: 1) network model compression; 2) knowledge distillation (KD); and 3) modification of network structures. We also elaborate on the diversity of these approaches and make side-by-side comparisons. Moreover, we discuss the applications of compacted DNNs in various IoT applications and outline future directions.
引用
收藏
页码:11935 / 11959
页数:25
相关论文
共 50 条
  • [31] Device Type Identification via Network Traffic and Lightweight Convolutional Neural Network for Internet of Things
    Qing, Guangwei
    Wang, Huifang
    Guo, Liang
    Yang, Jie
    IEEE ACCESS, 2020, 8 : 200219 - 200228
  • [32] Securing internet of things using machine and deep learning methods: a survey
    Ghaffari, Ali
    Jelodari, Nasim
    Pouralish, Samira
    Derakhshanfard, Nahide
    Arasteh, Bahman
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (07): : 9065 - 9089
  • [33] Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
    Samek, Wojciech
    Montavon, Gregoire
    Lapuschkin, Sebastian
    Anders, Christopher J.
    Mueller, Klaus-Robert
    PROCEEDINGS OF THE IEEE, 2021, 109 (03) : 247 - 278
  • [34] A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security
    Al-Garadi, Mohammed Ali
    Mohamed, Amr
    Al-Ali, Abdulla Khalid
    Du, Xiaojiang
    Ali, Ihsan
    Guizani, Mohsen
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (03): : 1646 - 1685
  • [35] Deep Reinforcement Learning for Autonomous Internet of Things: Model, Applications and Challenges
    Lei, Lei
    Tan, Yue
    Zheng, Kan
    Liu, Shiwen
    Zhang, Kuan
    Shen, Xuemin
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (03): : 1722 - 1760
  • [36] Deep Learning in the Industrial Internet of Things: Potentials, Challenges, and Emerging Applications
    Khalil, Ruhul Amin
    Saeed, Nasir
    Masood, Mudassir
    Fard, Yasaman Moradi
    Alouini, Mohamed-Slim
    Al-Naffouri, Tareq Y.
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (14): : 11016 - 11040
  • [37] A Survey of Machine and Deep Learning Methods for Privacy Protection in the Internet of Things
    Rodriguez, Eva
    Otero, Beatriz
    Canal, Ramon
    SENSORS, 2023, 23 (03)
  • [38] A Visualized Botnet Detection System Based Deep Learning for the Internet of Things Networks of Smart Cities
    Vinayakumar, R.
    Alazab, Mamoun
    Srinivasan, Sriram
    Pham, Quoc-Viet
    Padannayil, Soman Kotti
    Simran, K.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (04) : 4436 - 4456
  • [39] CS-CNN: Enabling Robust and Efficient Convolutional Neural Networks Inference for Internet-of-Things Applications
    Shen, Yiran
    Han, Tao
    Yang, Qing
    Yang, Xu
    Wang, Yong
    Li, Feng
    Wen, Hongkai
    IEEE ACCESS, 2018, 6 : 13439 - 13448
  • [40] Deep Learning for the Internet of Things
    Yao, Shuochao
    Zhao, Yiran
    Zhang, Aston
    Hu, Shaohan
    Shao, Huajie
    Zhang, Chao
    Su, Lu
    Abdelzaher, Tarek
    COMPUTER, 2018, 51 (05) : 32 - 41