Dynamic State Estimation of a Synchronous Machine Using PMU Data: A Comparative Study

被引:186
作者
Zhou, Ning [1 ]
Meng, Da [2 ]
Huang, Zhenyu [2 ]
Welch, Greg [3 ,4 ]
机构
[1] SUNY Binghamton, Dept Elect & Comp Engn, Binghamton, NY 13902 USA
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
[3] Univ Cent Florida, Orlando, FL 32826 USA
[4] Univ N Carolina, Chapel Hill, NC 27599 USA
关键词
Ensemble Kalman filter (EnKF); extended Kalman filter (EKF); particle filter (PF); phasor measurement unit (PMU); power system dynamics; state estimation; unscented Kalman filter (UKF);
D O I
10.1109/TSG.2014.2345698
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate information about dynamic states is important for efficient control and operation of a power system. This paper compares the performance of four Bayesian-based filtering approaches in estimating dynamic states of a synchronous machine using phasor measurement unit data. The four methods are extended Kalman filter, unscented Kalman filter, ensemble Kalman filter, and particle filter. The statistical performance of each algorithm is compared using Monte Carlo methods and a two-area-four-machine test system. Under the statistical framework, robustness against measurement noise and process noise, sensitivity to sampling interval, and computation time are evaluated and compared for each approach. Based on the comparison, this paper makes some recommendations for the proper use of the methods.
引用
收藏
页码:450 / 460
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2001, KALMAN FILTERING NEU
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]  
Chow J., 1991, USER MANUAL POWER SY, P79
[4]   A TOOLBOX FOR POWER-SYSTEM DYNAMICS AND CONTROL ENGINEERING-EDUCATION AND RESEARCH [J].
CHOW, JH ;
CHEUNG, KW .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (04) :1559-1564
[5]  
DeRusso P.M., 1998, STATE VARIABLES ENG, V2nd
[7]   Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data [J].
Fan, Lingling ;
Wehbe, Yasser .
ELECTRIC POWER SYSTEMS RESEARCH, 2013, 103 :168-177
[8]   Probabilistic Power Flow Studies for Transmission Systems With Photovoltaic Generation Using Cumulants [J].
Fan, Miao ;
Vittal, Vijay ;
Heydt, Gerald Thomas ;
Ayyanar, Raja .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (04) :2251-2261
[9]  
Farantatos E, 2009, IEEE POW ENER SOC GE, P3046
[10]   Online State Estimation of a Synchronous Generator Using Unscented Kalman Filter From Phasor Measurements Units [J].
Ghahremani, Esmaeil ;
Kamwa, Innocent .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2011, 26 (04) :1099-1108