Properties of electrochemical double-layer capacitors with carbon-nanotubes-on-carbon-fiber-felt electrodes

被引:25
作者
Felhosi, I. [1 ]
Keresztes, Z. [1 ]
Marek, T. [1 ]
Pajkossy, T. [1 ]
机构
[1] Hungarian Acad Sci, Res Ctr Nat Sci, Inst Mat & Environm Chem, Magyar Tudosok Korutja 2, H-1117 Budapest, Hungary
关键词
Electrochemical double layer capacitors; Carbon-nanotube layer; Carbon fiber; Cycling stability; Impedance; SUPERCAPACITOR ELECTRODES; DEPOSITION; CLOTH; PERFORMANCE;
D O I
10.1016/j.electacta.2019.135548
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon nanotube (CNT) layers deposited on carbon fiber cloth (CFC) materials have been studied as electrodes of electrochemical double layer capacitors (EDLCs), in particular, the electrochemical performance and cycle stability of symmetric EDLCs in an organic electrolyte (tetraethyl-ammonium-fluoroborate in acetonitrile). Due to the large surface area of carbon-fibers, the CNT mass loading can be as high as 18 mg/cm(2) which is magnitudes larger than that of what can be deposited on aluminium or nickel metal sheets. The area normalized double layer capacitance of CNT/CFC electrodes in the above organic electrolytes were found to be in the range of 100-400 mF/cm(2), and the specific capacitances were 18-48 F/g. These latter values are below the achievable values of single-wall CNT of 80 F/g; the lower values can be attributed to the presence of multi-walled CNTs of some quantities, having lower accessible surface area. The energy density of CNT/CFC supercapacitors is 0.8-1.5 Wh/kg, while the power density varies between 5 and 20 kW/kg calculated on electrode level. Excellent cycling stability of EDLCs built with CNT-on carbon felt electrodes has been demonstrated up to 1 million cycles, which is due to the inert nature of substrate causing the absence of corrosion process and high mass load of CNT. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 30 条
[1]   New trends in electrochemical supercapacitors [J].
Arbizzani, C ;
Mastragostino, M ;
Soavi, F .
JOURNAL OF POWER SOURCES, 2001, 100 (1-2) :164-170
[2]  
de Levie R., 1965, ADV ELECTROCHEMISTRY, V6, P329
[3]   High power supercap electrodes based on vertical aligned carbon nanotubes on aluminum [J].
Doerfler, S. ;
Felhoesi, I. ;
Marek, T. ;
Thieme, S. ;
Althues, H. ;
Nyikos, L. ;
Kaskel, S. .
JOURNAL OF POWER SOURCES, 2013, 227 :218-228
[4]   Tailoring structural and electrochemical properties of vertical aligned carbon nanotubes on metal foil using scalable wet-chemical catalyst deposition [J].
Doerfler, S. ;
Felhoesi, I. ;
Kek, I. ;
Marek, T. ;
Althues, H. ;
Kaskel, S. ;
Nyikos, L. .
JOURNAL OF POWER SOURCES, 2012, 208 :426-433
[5]   Wet-chemical catalyst deposition for scalable synthesis of vertical aligned carbon nanotubes on metal substrates [J].
Doerfler, S. ;
Meier, A. ;
Thieme, S. ;
Nemeth, P. ;
Althues, H. ;
Kaskel, S. .
CHEMICAL PHYSICS LETTERS, 2011, 511 (4-6) :288-293
[6]   High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition [J].
Du, Chunsheng ;
Pan, Ning .
NANOTECHNOLOGY, 2006, 17 (21) :5314-5318
[7]   Supercapacitor electrodes from multiwalled carbon nanotubes [J].
Frackowiak, E ;
Metenier, K ;
Bertagna, V ;
Beguin, F .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2421-2423
[8]  
Fu Zhao, 2014, ELECTROCHIM ACTA, V150, P35
[9]   Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J].
Futaba, Don N. ;
Hata, Kenji ;
Yamada, Takeo ;
Hiraoka, Tatsuki ;
Hayamizu, Yuhei ;
Kakudate, Yozo ;
Tanaike, Osamu ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio .
NATURE MATERIALS, 2006, 5 (12) :987-994
[10]   Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes [J].
Hahn, M ;
Baertschi, M ;
Barbieri, O ;
Sauter, JC ;
Kötz, R ;
Gallay, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (02) :A33-A36