In Vitro and In Vivo Models of CLL-T Cell Interactions: Implications for Drug Testing

被引:6
作者
Hoferkova, Eva [1 ,2 ,3 ,4 ]
Kadakova, Sona [1 ]
Mraz, Marek [1 ,2 ,3 ]
机构
[1] CEITEC Masaryk Univ, Mol Med, Brno 62500, Czech Republic
[2] Univ Hosp Brno, Dept Internal Med Hematol & Oncol, Brno 62500, Czech Republic
[3] Masaryk Univ, Fac Med, Brno 62500, Czech Republic
[4] Masaryk Univ, Fac Sci, Brno 61137, Czech Republic
基金
欧洲研究理事会;
关键词
chronic lymphocytic leukemia; T cells; models; CD40L; IL-4; IL-21; interleukin; venetoclax; ibrutinib; fludarabine; B cells; interactions; microenvironment; therapy resistance; co-culture; xenograft; E mu-TCL1; CHRONIC LYMPHOCYTIC-LEUKEMIA; ANTIGEN-INDEPENDENT PROLIFERATION; BCL-2; FAMILY-MEMBERS; KAPPA-B ACTIVATION; BONE-MARROW; CD40; STIMULATION; LYMPH-NODE; DIFFERENTIAL REGULATION; NOXA/MCL-1; BALANCE; KINASE INHIBITORS;
D O I
10.3390/cancers14133087
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL-T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INF gamma) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (E mu-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL-T-cell interactions and CLL proliferation.
引用
收藏
页数:21
相关论文
共 152 条
[1]   Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches [J].
Abarrategi, Ander ;
Mian, Syed A. ;
Passaro, Diana ;
Rouault-Pierre, Kevin ;
Grey, William ;
Bonnet, Dominique .
JOURNAL OF EXPERIMENTAL MEDICINE, 2018, 215 (03) :729-743
[2]   IL-4 enhances expression and function of surface IgM in CLL cells [J].
Aguilar-Hernandez, Maria M. ;
Blunt, Matthew D. ;
Dobson, Rachel ;
Yeomans, Alison ;
Thirdborough, Stephen ;
Larrayoz, Marta ;
Smith, Lindsay D. ;
Linley, Adam ;
Strefford, Jonathan C. ;
Davies, Andrew ;
Johnson, Peter M. W. ;
Savelyeva, Natalia ;
Cragg, Mark S. ;
Forconi, Francesco ;
Packham, Graham ;
Stevenson, Freda K. ;
Steele, Andrew J. .
BLOOD, 2016, 127 (24) :3015-3025
[3]   Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia [J].
Ahearne, Matthew J. ;
Willimott, Shaun ;
Pinon, Lucia ;
Kennedy, D. Benjamin ;
Miall, Fiona ;
Dyer, Martin J. S. ;
Wagner, Simon D. .
BRITISH JOURNAL OF HAEMATOLOGY, 2013, 162 (03) :360-370
[4]   Chronic Lymphocytic Leukemia-Derived IL-10 Suppresses Antitumor Immunity [J].
Alhakeem, Sara S. ;
McKenna, Mary K. ;
Oben, Karine Z. ;
Noothi, Sunil K. ;
Rivas, Jacqueline R. ;
Hildebrandt, Gerhard C. ;
Fleischman, Roger A. ;
Rangnekar, Vivek M. ;
Muthusamy, Natarajan ;
Bondada, Subbarao .
JOURNAL OF IMMUNOLOGY, 2018, 200 (12) :4180-4189
[5]  
[Anonymous], 2013, BLOOD
[6]   Establishing human leukemia xenograft mouse models by implanting human bone marrow-like scaffold-based niches [J].
Antonelli, Antonella ;
Noort, Willy A. ;
Jaques, Jenny ;
de Boer, Bauke ;
de Jong-Korlaar, Regina ;
Brouwers-Vos, Annet Z. ;
Lubbers-Aalders, Linda ;
van Velzen, Jeroen F. ;
Bloem, Andries C. ;
Yuan, Huipin ;
de Bruijn, Joost D. ;
Ossenkoppele, Gert J. ;
Martens, Anton C. M. ;
Vellenga, Edo ;
Groen, Richard W. J. ;
Schuringa, Jan Jacob .
BLOOD, 2016, 128 (25) :2949-2959
[7]   Investigating the role of CD38 and functionally related molecular risk factors in the CLL NOD/SCID xenograft model [J].
Aydin, Semra ;
Grabellus, Florian ;
Eisele, Lewin ;
Moellmann, Michael ;
Hanoun, Maher ;
Ebeling, Peter ;
Moritz, Thomas ;
Carpinteiro, Alexander ;
Nueckel, Holger ;
Sak, Ali ;
Goethert, Joachim R. ;
Duehrsen, Ulrich ;
Duerig, Jan .
EUROPEAN JOURNAL OF HAEMATOLOGY, 2011, 87 (01) :10-19
[8]   A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease [J].
Bagnara, Davide ;
Kaufman, Matthew S. ;
Calissano, Carlo ;
Marsilio, Sonia ;
Patten, Piers E. M. ;
Simone, Rita ;
Chum, Philip ;
Yan, Xiao-Jie ;
Allen, Steven L. ;
Kolitz, Jonathan E. ;
Baskar, Sivasubramanian ;
Rader, Christoph ;
Mellstedt, Hakan ;
Rabbani, Hodjattallah ;
Lee, Annette ;
Gregersen, Peter K. ;
Rai, Kanti R. ;
Chiorazzi, Nicholas .
BLOOD, 2011, 117 (20) :5463-5472
[9]   Three-dimensional co-culture model of chronic lymphocytic leukemia bone marrow microenvironment predicts patient-specific response to mobilizing agents [J].
Barbaglio, Federica ;
Belloni, Daniela ;
Scarfo, Lydia ;
Sbrana, Francesca Vittoria ;
Ponzoni, Maurilio ;
Bongiovanni, Lucia ;
Pavesi, Luca ;
Zambroni, Desiree ;
Stamatopoulos, Kostas ;
Caiolfa, Valeria R. ;
Ferrero, Elisabetta ;
Ghia, Paolo ;
Scielzo, Cristina .
HAEMATOLOGICA, 2021, 106 (09) :2334-2344
[10]   Activation of Interferon Signaling in Chronic Lymphocytic Leukemia Cells Contributes to Apoptosis Resistance via a JAK-Src/STAT3/Mcl-1 Signaling Pathway [J].
Bauvois, Brigitte ;
Pramil, Elodie ;
Jondreville, Ludovic ;
Quiney, Claire ;
Nguyen-Khac, Florence ;
Susin, Santos A. .
BIOMEDICINES, 2021, 9 (02) :1-15