Nonuniqueness of fluctuating momentum in coarse-grained systems

被引:2
作者
Parsa, M. Reza [1 ]
Kim, Changho [1 ]
Wagner, Alexander J. [2 ]
机构
[1] Univ Calif, Dept Appl Math, Merced, CA 95343 USA
[2] North Dakota State Univ, Dept Phys, Fargo, ND 58108 USA
关键词
CELLULAR-AUTOMATON; LATTICE; DYNAMICS; SIMULATION; MOTION; MODELS;
D O I
10.1103/PhysRevE.104.015304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Coarse-grained descriptions of microscopic systems often require a mesoscopic definition of momentum. The question arises as to the uniqueness of such a momentum definition at a particular coarse-graining scale. We show here that particularly the fluctuating properties of common definitions of momentum in coarse-grained methods like lattice gas and lattice Boltzmann do not agree with a fundamental definition of momentum. In the case of lattice gases, the definition of momentum will even disagree in the limit of large wavelength. For short times we derive analytical representations for the distribution of different momentum measures and thereby give a full account of these differences.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Fluctuating lattice Boltzmann [J].
Adhikari, R ;
Stratford, K ;
Cates, ME ;
Wagner, AJ .
EUROPHYSICS LETTERS, 2005, 71 (03) :473-479
[2]   Minimal entropic kinetic models for hydrodynamics [J].
Ansumali, S ;
Karlin, IV ;
Öttinger, HC .
EUROPHYSICS LETTERS, 2003, 63 (06) :798-804
[3]   Integer lattice gas with Monte Carlo collision operator recovers the lattice Boltzmann method with Poisson-distributed fluctuations [J].
Blommel, Thomas ;
Wagner, Alexander J. .
PHYSICAL REVIEW E, 2018, 97 (02)
[4]  
Boon, 1991, MOL HYDRODYNAMICS
[5]   Statistical mechanics of the fluctuating lattice Boltzmann equation [J].
Duenweg, Burkhard ;
Schiller, Ulf D. ;
Ladd, Anthony J. C. .
PHYSICAL REVIEW E, 2007, 76 (03)
[6]   STATISTICAL-MECHANICS OF DISSIPATIVE PARTICLE DYNAMICS [J].
ESPANOL, P ;
WARREN, P .
EUROPHYSICS LETTERS, 1995, 30 (04) :191-196
[7]   Coarse-graining of a fluid and its relation with dissipative particle dynamics and smoothed particle dynamics [J].
Espanol, P ;
Serrano, M ;
Zuniga, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04) :899-908
[8]   SIMULATION OF DIFFUSION IN A TWO-DIMENSIONAL LATTICE-GAS CELLULAR AUTOMATON - A TEST OF MODE-COUPLING THEORY [J].
FRENKEL, D ;
ERNST, MH .
PHYSICAL REVIEW LETTERS, 1989, 63 (20) :2165-2168
[9]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[10]   ADIOS 2: The Adaptable Input Output System. A framework for high-performance data management [J].
Godoy, William F. ;
Podhorszki, Norbert ;
Wang, Ruonan ;
Atkins, Chuck ;
Eisenhauer, Greg ;
Gu, Junmin ;
Davis, Philip ;
Choi, Jong ;
Germaschewski, Kai ;
Huck, Kevin ;
Huebl, Axel ;
Kim, Mark ;
Kress, James ;
Kurc, Tahsin ;
Liu, Qing ;
Logan, Jeremy ;
Mehta, Kshitij ;
Ostrouchov, George ;
Parashar, Manish ;
Poeschel, Franz ;
Pugmire, David ;
Suchyta, Eric ;
Takahashi, Keichi ;
Thompson, Nick ;
Tsutsumi, Seiji ;
Wan, Lipeng ;
Wolf, Matthew ;
Wu, Kesheng ;
Klasky, Scott .
SOFTWAREX, 2020, 12