Multifrontal method preconditioned GMRES-FFT algorithm for fast analysis of microstrip circuits

被引:3
作者
Chen, RS [1 ]
Mo, L
Yung, EKN
机构
[1] Nanjing Univ Sci & Technol, Dept Commun Engn, Nanjing, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
integral equations; numerical analysis;
D O I
10.1108/03321640510571075
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose - Aims to apply the generalized minimal residual (GMRES) algorithm combined with the fast Fourier transform (FFT) technique to solve dense matrix equations from the mixed potential integral equation (MPIE) when the planar microstrip circuits are analyzed. Design/methodology/approach - To enhance the computational efficiency of the GMRES-FFT algorithm, the multifrontal method is first employed to precondition the matrix equations since their condition numbers can be improved. Findings - The numerical calculations show that the proposed preconditioned GMRES-FFT algorithm can converge nearly 30 times faster than the conventional one for the analysis of microstrip circuits. Some typical microstrip discontinuities are analyzed and the good results demonstrate the validity of the proposed algorithm. Originality/value - In the future, some more efficient preconditioning techniques will be found for the mixed potential integral equation (MPIE) when the planar microstrip circuits are analyzed.
引用
收藏
页码:94 / 106
页数:13
相关论文
共 34 条
[1]  
AHN S, 1999, J NEUROSCI, V19, P1
[2]  
Amini S, 1998, INT J NUMER METH ENG, V41, P875, DOI 10.1002/(SICI)1097-0207(19980315)41:5<875::AID-NME313>3.0.CO
[3]  
2-9
[4]  
AXELSSON O., 1990, LECT NOTES MATH, V1457
[5]   Fast algorithm for matrix-vector multiply of asymmetric multilevel block-Toeplitz matrices in 3-D scattering [J].
Barrowes, BE ;
Teixeira, FL ;
Kong, JA .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 31 (01) :28-32
[6]   Preconditioned generalized minimal residual iterative scheme for perfectly matched layer terminated applications [J].
Botros, YY ;
Volakis, JL .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1999, 9 (02) :45-47
[7]   IMPROVED IMPEDANCE MATRIX LOCALIZATION METHOD [J].
CANNING, FX .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (05) :659-667
[8]   Diagonal preconditioners for the EFIE using a wavelet basis [J].
Canning, FX ;
Scholl, JF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (09) :1239-1246
[9]   On a class of preconditioning methods for dense linear systems from boundary elements [J].
Chen, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (02) :684-698
[10]  
Chen RS, 2000, MICROW OPT TECHN LET, V27, P235, DOI 10.1002/1098-2760(20001120)27:4<235::AID-MOP5>3.0.CO