Moderate -temperature chemical looping splitting of CO 2 and H 2 O for syngas generation

被引:25
作者
Cao, Zeshui [1 ]
Zhu, Xing [1 ]
Li, Kongzhai [1 ]
Wei, Yonggang [1 ]
He, Fang [2 ]
Wang, Hua [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[2] Guilin Univ Technol, Coll Chem & Bioengn, Guilin 541004, Peoples R China
关键词
CATALYTIC PARTIAL OXIDATION; LATTICE OXYGEN REACTIVITY; HYDROGEN-PRODUCTION; CARBON DEPOSITION; STORAGE CAPACITY; REDOX CATALYSTS; SYNTHESIS GAS; METHANE; DRY; NI;
D O I
10.1016/j.cej.2020.125393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Moderate-temperature chemical looping processes circumvent challenges including the sintering of oxygen carrier (redox catalyst) materials and the deterioration of the reactor at elevated temperatures (800–1000 °C). While the activation of hydrocarbons and oxygen releasing from metal oxides are difficult at lower temperatures, leading to slow redox kinetics in chemical looping. Herein, we proposed a moderate-temperature (500–700 °C) chemical looping scheme composed of methane partial oxidation and splitting of CO2 and H2O for syngas generation. By virtue of the methane activation of highly dispersed nano-metallic Ni on CeZrO2 solid solution, CO2 activation over the oxygen vacancies-enriched Ni-CeZrO2-δ interface and the high recyclability of the material redox process, syngas with an ideal H2/CO molar ratio is produced by alternative selective oxidation of methane using lattice oxygen and conversion of CO2 and H2O using oxygen vacancies over Ni-CeZrO2 redox catalyst at 650 °C. Lattice oxygen/oxygen vacancies in 3wt.%Ni/CeZrO2 catalyst dominate the redox process for methane/H2O-CO2 conversion, and deposited carbon from methane crack at a deep reduction condition will transfer to the oxidation step to increase syngas production via gasification. The proposed chemical looping scheme provides an efficient strategy for the CO2 and methane conversion at moderate-temperature condition, which will extremely expand the application of redox catalysts in chemical looping reforming processes. © 2020
引用
收藏
页数:12
相关论文
共 63 条
[1]   Recent advances in dry reforming of methane over Ni-based catalysts [J].
Abdullah, Bawadi ;
Ghani, Nur Azeanni Abd ;
Vo, Dai-Viet N. .
JOURNAL OF CLEANER PRODUCTION, 2017, 162 :170-185
[2]   Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane [J].
Alipour, Zahra ;
Rezaei, Mehran ;
Meshkani, Fereshteh .
FUEL, 2014, 129 :197-203
[3]   Review of methane catalytic cracking for hydrogen production [J].
Amin, Ashraf M. ;
Croiset, Eric ;
Epling, William .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) :2904-2935
[4]   Effect of ionic liquid in Ni/ZrO2 catalysts applied to syngas production by methane tri-reforming [J].
Anchieta, Chayene Goncalves ;
Assaf, Elisabete Moreira ;
Assaf, Jose Mansur .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (18) :9316-9327
[5]   A review of heterogeneous catalysts for syngas production via dry reforming [J].
Aziz, M. A. A. ;
Setiabudi, H. D. ;
Teh, L. P. ;
Annuar, N. H. R. ;
Jalil, A. A. .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 101 :139-158
[6]  
Bhavsar S., 2014, Reactor and Process Design in Sustainable Energy Technology, P233
[7]   Sorbent-Enhanced Methane Reforming over a Ni-Ca-Based, Bifunctional Catalyst Sorbent [J].
Broda, Marcin ;
Kierzkowska, Agnieszka M. ;
Baudouin, David ;
Imtiaz, Qasim ;
Coperet, Christophe ;
Mueller, Christoph R. .
ACS CATALYSIS, 2012, 2 (08) :1635-1646
[8]   Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization [J].
Burkart, Michael D. ;
Hazari, Nilay ;
Tway, Cathy L. ;
Zeitler, Elizabeth L. .
ACS CATALYSIS, 2019, 9 (09) :7937-7956
[9]   Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane [J].
Chen, Sai ;
Zeng, Liang ;
Tian, Hao ;
Li, Xinyu ;
Gong, Jinlong .
ACS CATALYSIS, 2017, 7 (05) :3548-3559
[10]  
Chen Y., 2019, ACS SUSTAINABLE CHEM