Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey

被引:193
|
作者
Sultana, Farhana [1 ]
Sufian, Abu [1 ]
Dutta, Paramartha [2 ]
机构
[1] Univ Gour Banga, Dept Comp Sci, Malda, India
[2] Visva Bharati Univ, Dept Comp & Syst Sci, Bolpur, India
关键词
Convolutional neural network; Deep learning; Semantic segmentation; Instance segmentation; Panoptic segmentation; Survey; ARCHITECTURE; FEATURES;
D O I
10.1016/j.knosys.2020.106062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
From the autonomous car driving to medical diagnosis, the requirement of the task of image segmentation is everywhere. Segmentation of an image is one of the indispensable tasks in computer vision. This task is comparatively complicated than other vision tasks as it needs low-level spatial information. Basically, image segmentation can be of two types: semantic segmentation and instance segmentation. The combined version of these two basic tasks is known as panoptic segmentation. In the recent era, the success of deep convolutional neural networks (CNN) has influenced the field of segmentation greatly and gave us various successful models to date. In this survey, we are going to take a glance at the evolution of both semantic and instance segmentation work based on CNN. We have also specified comparative architectural details of some state-of-the-art models and discuss their training details to present a lucid understanding of hyper-parameter tuning of those models. We have also drawn a comparison among the performance of those models on different datasets. Lastly, we have given a glimpse of some state-of-the-art panoptic segmentation models. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation
    Jha, Debesh
    Riegler, Michael A.
    Johansen, Dag
    Halvorsen, Pal
    Johansen, Havard D.
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 558 - 564
  • [22] Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation
    Ding, Yang
    Acosta, Rolando
    Enguix, Vicente
    Suffren, Sabrina
    Ortmann, Janosch
    Luck, David
    Dolz, Jose
    Lodygensky, Gregory A.
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [23] Medical image retrieval using deep convolutional neural network
    Qayyum, Adnan
    Anwar, Syed Muhammad
    Awais, Muhammad
    Majid, Muhammad
    NEUROCOMPUTING, 2017, 266 : 8 - 20
  • [24] Image Denoising using Deep Learning: Convolutional Neural Network
    Ghose, Shreyasi
    Singh, Nishi
    Singh, Prabhishek
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 511 - 517
  • [25] Practical method of cell segmentation in electron microscope image stack using deep convolutional neural network
    Konishi, Kohki
    Mimura, Masafumi
    Nonaka, Takao
    Sase, Ichiro
    Nishioka, Hideo
    Suga, Mitsuo
    MICROSCOPY, 2019, 68 (04) : 338 - 341
  • [26] Segmentation of glioma tumors in brain using deep convolutional neural network
    Hussain, Saddam
    Anwar, Syed Muhammad
    Majid, Muhammad
    NEUROCOMPUTING, 2018, 282 : 248 - 261
  • [27] A new method for segmentation of medical image using convolutional neural network
    Luo, Fugui
    Qin, Yunchu
    Li, Mingzhen
    Song, Qian
    JOURNAL OF OPTICS-INDIA, 2024, 53 (04): : 3411 - 3420
  • [28] Side Scan Sonar Segmentation Using Deep Convolutional Neural Network
    Song, Yan
    Zhu, Yuemei
    Li, Guangliang
    Feng, Chen
    He, Bo
    Yan, Tianhong
    OCEANS 2017 - ANCHORAGE, 2017,
  • [29] Brain Tumor Segmentation using Cascaded Deep Convolutional Neural Network
    Hussain, Saddam
    Anwar, Syed Muhammad
    Majid, Muhammad
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1998 - 2001
  • [30] A Novel Deep Learning Model for Medical Image Segmentation with Convolutional Neural Network and Transformer
    Zhang, Zhuo
    Wu, Hongbing
    Zhao, Huan
    Shi, Yicheng
    Wang, Jifang
    Bai, Hua
    Sun, Baoshan
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2023, 15 (04) : 663 - 677