Automatic segmentation of the cerebral ventricle in neonates using deep learning with 3D reconstructed freehand ultrasound imaging

被引:0
作者
Martin, Matthieu [1 ]
Sciolla, Bruno [1 ]
Sdika, Michael [1 ]
Wang, Xiaoyu [2 ]
Quetin, Philippe [3 ]
Delachartre, Philippe [1 ]
机构
[1] UJM St Etienne, Univ Claude Bernard Lyon 1, INSALyon,CREATIS Lab, Univ Lyon,CNRS,Inserm,CREATIS,UMR 5220,U1206, F-69100 Lyon, France
[2] IMT Atlantique, Brest, France
[3] CH Avignon, Avignon, France
来源
2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2018年
关键词
preterm neonate; 3D reconstruction; ventriculomegaly; segmentation; deep learning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Preterm neonates can be subject to ventriculomegaly, which is an enlargement of the cerebral ventricle system (CVS) that can lead to brain damage. In clinical practice, 2D coronal hand-held ultrasonographic scans are performed to assess CVS dilation. Estimating CVS volumes from 2D images is, however, imprecise and time consuming since 3D information is lacking. To address this issue, we propose a 3D reconstruction method and an automatic deep learning segmentation algorithm. The accuracy of the 3D reconstruction was assessed by calculating Mean Absolute Distance (MAD) between manual segmentation of the corpus callosum (CC) on a ground reference and the 3D reconstructed volume, a mean value of 1.55 mm was obtained. The accuracy of the segmentation was evaluated using Dice, Hausdorff distance (d(H)) and MAD, respective average values of 0.816, 13.6 mm and 0.62 mm were obtained. The computation time of a segmentation for one 256 x 256 x 256 volume was 5 s.
引用
收藏
页数:4
相关论文
共 9 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], IEEE 15 INT S BIOM I
[3]  
[Anonymous], ARXIV180602305
[4]   Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children [J].
Lind, Annika ;
Parkkola, Riitta ;
Lehtonen, Liisa ;
Munck, Petriina ;
Maunu, Jonna ;
Lapinleimu, Helena ;
Haataja, Leena .
PEDIATRIC RADIOLOGY, 2011, 41 (08) :953-961
[5]   Ventricular dilatation in relation to outcome at 2 years of age in very preterm infants: a prospective Finnish cohort study [J].
Maunu, Jonna ;
Lehtonen, Liisa ;
Lapinleimu, Helena ;
Matomaki, Jaakko ;
Munck, Petriina ;
Rikalainen, Hellevi ;
Parkkola, Riitta ;
Haataja, Leena .
DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2011, 53 (01) :48-54
[6]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[7]   Automatic segmentation approach to extracting neonatal cerebral ventricles from 3D ultrasound images [J].
Qiu, Wu ;
Chen, Yimin ;
Kishimoto, Jessica ;
de Ribaupierre, Sandrine ;
Chiu, Bernard ;
Fenster, Aaron ;
Yuan, Jing .
MEDICAL IMAGE ANALYSIS, 2017, 35 :181-191
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[9]   Freehand 3D ultrasound reconstruction algorithms - A review [J].
Solberg, Ole Vegard ;
Lindseth, Frank ;
Torp, Hans ;
Blake, Richard E. ;
Hernes, Toril A. Nagelhus .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2007, 33 (07) :991-1009