Groups that together with any transformation generate regular semigroups or idempotent generated semigroups

被引:11
作者
Araujo, J. [1 ,2 ]
Mitchell, J. D. [3 ]
Schneider, Csaba [1 ]
机构
[1] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
[2] Univ Aberta, P-12690 Lisbon, Portugal
[3] Math Inst, St Andrews KY16 9SS, Fife, Scotland
基金
匈牙利科学研究基金会;
关键词
Transformation semigroups; Idempotent generated semigroups; Regular semigroups; Permutation groups; Primitive groups; O'Nan-Scott Theorem; INDEPENDENCE ALGEBRAS; INVERSE SEMIGROUPS; SEMILATTICES;
D O I
10.1016/j.jalgebra.2011.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a be a non-invertible transformation of a finite set and let G be a group of permutations on that same set. Then < G,a > \ G is a subsemigroup, consisting of all non-invertible transformations, in the semigroup generated by G and a. Likewise, the conjugates a(g) = g(-1)ag of a by elements of G generate a semigroup denoted by (a(g) vertical bar g is an element of G). We classify the finite permutation groups G on a finite set X such that the semigroups < G, a >, < G, a > backslash G, and < a(g) vertical bar go G) are regular for all transformations of X. We also classify the permutation groups G on a finite set X such that the semigroups (G, a) backslash G and (a(g) vertical bar g is an element of G) are generated by their idempotents for all non-invertible transformations of X. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 28 条
[1]  
[Anonymous], 1996, GRAD TEXTS MATH
[2]  
ARAUJO J, 2006, GROUP THEORETI UNPUB
[3]  
ARAUJO J, 2009, FINITE PERMUTATION G
[4]   Synchronizing groups and automata [J].
Arnold, Fredrick ;
Steinberg, Benjamin .
THEORETICAL COMPUTER SCIENCE, 2006, 359 (1-3) :101-110
[5]   Quasiprimitive groups and blow-up decompositions [J].
Baddeley, Robert W. ;
Praeger, Cheryl E. ;
Schneider, Csaba .
JOURNAL OF ALGEBRA, 2007, 311 (01) :337-351
[6]   CORES OF SYMMETRIC GRAPHS [J].
Cameron, Peter J. ;
Kazanidis, Priscila A. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 85 (02) :145-154
[7]  
Cameron Peter J., 1999, London Mathematical Society Student Texts, V45
[8]   Independence algebras [J].
Cameron, PJ ;
Szabó, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :321-334
[9]   INDEPENDENCE ALGEBRAS [J].
GOULD, V .
ALGEBRA UNIVERSALIS, 1995, 33 (03) :294-318
[10]  
HOWIE JM, 1966, J LONDON MATH SOC, V41, P707