Structure selection and identification of Hammerstein type nonlinear systems using automatic choosing function model and genetic algorithm

被引:6
作者
Hachino, T [1 ]
Takata, H [1 ]
机构
[1] Kagoshima Univ, Dept Elect & Elect Engn, Kagoshima 8900065, Japan
来源
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES | 2005年 / E88A卷 / 10期
关键词
identification; nonlinear system; Hammerstein model; automatic choosing function; genetic algorithm;
D O I
10.1093/ietfec/e88-a.10.2541
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel method of structure selection and identification for Hammerstein type nonlinear systems. An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The connection coefficients of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. The adjusting parameters for the ACF model structure, i.e. the number and widths of the subdomains and the shape of the ACF are properly selected by using a genetic algorithm, in which the Akaike information criterion is utilized as the fitness value function. The effectiveness of the proposed method is confirmed through numerical experiments.
引用
收藏
页码:2541 / 2547
页数:7
相关论文
共 50 条
[41]   Model selection using a simplex reproduction genetic algorithm [J].
Vesin, JM ;
Grüter, R .
SIGNAL PROCESSING, 1999, 78 (03) :321-327
[42]   A changing forgetting factor RLS for online identification of nonlinear systems based on ELM–Hammerstein model [J].
Yinggan Tang ;
Zhenzhen Han ;
Ying Wang ;
Linlin Zhang ;
Qiushen Lian .
Neural Computing and Applications, 2017, 28 :813-827
[43]   Genetic algorithm for optimizing the nonlinear time alignment of automatic speech recognition systems [J].
Kwong, S ;
Chau, CW ;
Halang, WA .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1996, 43 (05) :559-566
[44]   Identification of nonlinear systems using NARMAX model [J].
Rahrooh, Alireza ;
Shepard, Scott .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1198-E1202
[45]   Genetic algorithm based identification of nonlinear systems by sparse Volterra filters [J].
Yao, L .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) :3433-3435
[46]   Nonlinear parametric model identification using genetic algorithms [J].
Pedroso-Rodriguez, LM ;
Marrero, A ;
de Arazoza, H .
ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 :473-480
[47]   A changing forgetting factor RLS for online identification of nonlinear systems based on ELM-Hammerstein model [J].
Tang, Yinggan ;
Han, Zhenzhen ;
Wang, Ying ;
Zhang, Linlin ;
Lian, Qiushen .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 :S813-S827
[48]   Selection of sand models and identification of parameters using an enhanced genetic algorithm [J].
Jin, Yin-Fu ;
Yin, Zhen-Yu ;
Shen, Shui-Long ;
Hicher, Pierre-Yves .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2016, 40 (08) :1219-1240
[49]   Observer for nonlinear systems with unknown input using mean value theorem and genetic algorithm [J].
Ben Messaoud, Ramzi ;
Hajji, Salah .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (06) :1904-1915
[50]   Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle [J].
Chen, Huibo ;
Xiao, Yongsong ;
Ding, Feng .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 :1202-1210