Structure selection and identification of Hammerstein type nonlinear systems using automatic choosing function model and genetic algorithm

被引:5
|
作者
Hachino, T [1 ]
Takata, H [1 ]
机构
[1] Kagoshima Univ, Dept Elect & Elect Engn, Kagoshima 8900065, Japan
来源
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES | 2005年 / E88A卷 / 10期
关键词
identification; nonlinear system; Hammerstein model; automatic choosing function; genetic algorithm;
D O I
10.1093/ietfec/e88-a.10.2541
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel method of structure selection and identification for Hammerstein type nonlinear systems. An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The connection coefficients of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. The adjusting parameters for the ACF model structure, i.e. the number and widths of the subdomains and the shape of the ACF are properly selected by using a genetic algorithm, in which the Akaike information criterion is utilized as the fitness value function. The effectiveness of the proposed method is confirmed through numerical experiments.
引用
收藏
页码:2541 / 2547
页数:7
相关论文
共 50 条
  • [1] Identification in nonlinear systems by using an automatic choosing function and a genetic algorithm
    Hachino, T
    Takata, H
    ELECTRICAL ENGINEERING IN JAPAN, 1998, 125 (04) : 43 - 51
  • [2] Identification for nonlinear systems by the automatic choosing function and the genetic algorithm
    Hachino, T
    Takata, H
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 83 - 88
  • [3] Nonlinear Hammerstein model identification using Genetic Algorithm
    Akramizadeh, A
    Farjami, AA
    Khaloozadeh, H
    2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, 2002, : 351 - 356
  • [4] New algorithm for the Automatic Selection of Optimal Model Structure in the Identification of Nonlinear Systems.
    Kortmann, M.
    Unbehauen, H.
    1600, (35):
  • [5] AN ITERATIVE METHOD FOR IDENTIFICATION OF NONLINEAR SYSTEMS USING A HAMMERSTEIN MODEL
    NARENDRA, KS
    GALLMAN, PG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1966, AC11 (03) : 546 - &
  • [6] Identification of Nonlinear Systems as Hammerstein model Using Auxiliary Model Technique
    Zhang, Mingguang
    Yu, Yang
    Li, Feng
    Cao, Qingfeng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1418 - 1422
  • [7] Wiener and Hammerstein Nonlinear Systems Identification Using Hybrid Genetic and Swarming Intelligence Based Culture Algorithm
    Naitali, A.
    Giri, F.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 4528 - 4533
  • [8] Nonlinear system identification using butterfly optimisation algorithm and Hammerstein model
    Singh, Sandeep
    Rawat, Tarun Kumar
    Ashok, Alaknanda
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 42 (02) : 171 - 179
  • [9] Nonlinear Hammerstein Model Identification of SOFC using Improved GEO Algorithm
    Huo, Haibo
    Wu, Yanxiang
    Wang, Weihong
    Kuang, Xinghong
    Gan, Shihong
    Liu, Yuqing
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5767 - 5773
  • [10] Fuzzy Hammerstein model and its parameters identification using genetic algorithm
    Liutkevicius, Raimundas
    Dainys, Saulius
    Electrical and Control Technologies, Proceedings, 2006, : 195 - 200