A deep manifold-regularized learning model for improving phenotype prediction from multi-modal data

被引:23
|
作者
Nguyen, Nam D. [1 ,2 ,6 ]
Huang, Jiawei [3 ,7 ]
Wang, Daifeng [2 ,4 ,5 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY USA
[2] Univ Wisconsin Madison, Waisman Ctr, Madison, WI USA
[3] Univ Wisconsin Madison, Dept Stat, Madison, WI USA
[4] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA
[5] Univ Wisconsin Madison, Dept Comp Sci, Madison, WI USA
[6] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA USA
[7] Univ Cincinnati, Coll Business, Cincinnati, OH USA
来源
NATURE COMPUTATIONAL SCIENCE | 2022年 / 2卷 / 01期
基金
美国国家卫生研究院;
关键词
DIMENSIONALITY REDUCTION;
D O I
10.1038/s43588-021-00185-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The phenotypes of complex biological systems are fundamentally driven by various multi-scale mechanisms. Multi-modal data, such as single-cell multi-omics data, enable a deeper understanding of underlying complex mechanisms across scales for phenotypes. We have developed an interpretable regularized learning model, deepManReg, to predict phenotypes from multi-modal data. First, deepManReg employs deep neural networks to learn cross-modal manifolds and then to align multi-modal features onto a common latent space. Second, deepManReg uses cross-modal manifolds as a feature graph to regularize the classifiers for improving phenotype predictions and also for prioritizing the multi-modal features and cross-modal interactions for the phenotypes. We apply deepManReg to (1) an image dataset of handwritten digits with multi-features and (2) single-cell multi-modal data (Patch-seq data) including transcriptomics and electrophysiology for neuronal cells in the mouse brain. We show that deepManReg improves phenotype prediction in both datasets, and also prioritizes genes and electrophysiological features for the phenotypes of neuronal cells.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [1] A deep manifold-regularized learning model for improving phenotype prediction from multi-modal data
    Nam D. Nguyen
    Jiawei Huang
    Daifeng Wang
    Nature Computational Science, 2022, 2 : 38 - 46
  • [2] Multimodal manifold-regularized transfer learning for MCI conversion prediction
    Bo Cheng
    Mingxia Liu
    Heung-Il Suk
    Dinggang Shen
    Daoqiang Zhang
    Brain Imaging and Behavior, 2015, 9 : 913 - 926
  • [3] Prediction of crime occurrence from multi-modal data using deep learning
    Kang, Hyeon-Woo
    Kang, Hang-Bong
    PLOS ONE, 2017, 12 (04):
  • [4] Multimodal manifold-regularized transfer learning for MCI conversion prediction
    Cheng, Bo
    Liu, Mingxia
    Suk, Heung-Il
    Shen, Dinggang
    Zhang, Daoqiang
    BRAIN IMAGING AND BEHAVIOR, 2015, 9 (04) : 913 - 926
  • [5] Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction
    Cheng, Bo
    Zhang, Daoqiang
    Jie, Biao
    Shen, Dinggang
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2013), 2013, 8184 : 251 - 259
  • [6] Ensemble Manifold Regularized Multi-Modal Graph Convolutional Network for Cognitive Ability Prediction
    Qu, Gang
    Xiao, Li
    Hu, Wenxing
    Wang, Junqi
    Zhang, Kun
    Calhoun, Vince D.
    Wang, Yu-Ping
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (12) : 3564 - 3573
  • [7] MMDL: A Novel Multi-modal Deep Learning Model for Stock Market Prediction
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 1070 - 1071
  • [8] Multi-Modal Deep Learning for the Thickness Prediction of Blood Clot
    Moon, Jiseon
    Ahn, Sangil
    Joo, Min Gyu
    Baac, Hyoung Won
    Shin, Jitae
    2023 25TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, ICACT, 2023, : 341 - 344
  • [9] RADIOGRAPHIC OSTEOARTHRITIS PROGRESSION PREDICTION VIA MULTI-MODAL IMAGING DATA AND DEEP LEARNING
    Panfilov, E.
    Tiulpin, A.
    Nieminen, M. T.
    Saarakkala, S.
    OSTEOARTHRITIS AND CARTILAGE, 2022, 30 : S86 - S87
  • [10] Fluence Map Prediction with Deep Learning: A Multi-Modal Approach
    Mgboh, U. T.
    Zhu, D.
    Kim, J. P.
    MEDICAL PHYSICS, 2024, 51 (10) : 7695 - 7696