Frustum PointNets for 3D Object Detection from RGB-D Data

被引:1636
作者
Qi, Charles R. [1 ]
Liu, Wei [2 ]
Wu, Chenxia [2 ]
Su, Hao [3 ]
Guibas, Leonidas J. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Nuro Inc, Mountain View, CA USA
[3] Univ Calif San Diego, La Jolla, CA USA
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR.2018.00102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes ( region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 50 条
[31]   RGB-D salient object detection: A survey [J].
Tao Zhou ;
Deng-Ping Fan ;
Ming-Ming Cheng ;
Jianbing Shen ;
Ling Shao .
Computational Visual Media, 2021, 7 (01) :37-69
[32]   RGB-D salient object detection: A survey [J].
Zhou, Tao ;
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Shen, Jianbing ;
Shao, Ling .
COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) :37-69
[33]   RGB-D Object Tracking with Occlusion Detection [J].
Xie, Yujun ;
Lu, Yao ;
Gu, Shuang .
2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, :11-15
[34]   RGB-D salient object detection: A survey [J].
Tao Zhou ;
Deng-Ping Fan ;
Ming-Ming Cheng ;
Jianbing Shen ;
Ling Shao .
Computational Visual Media, 2021, 7 :37-69
[35]   Salient Object Detection in RGB-D Videos [J].
Mou, Ao ;
Lu, Yukang ;
He, Jiahao ;
Min, Dingyao ;
Fu, Keren ;
Zhao, Qijun .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 :6660-6675
[36]   Calibrated RGB-D Salient Object Detection [J].
Ji, Wei ;
Li, Jingjing ;
Yu, Shuang ;
Zhang, Miao ;
Piao, Yongri ;
Yao, Shunyu ;
Bi, Qi ;
Ma, Kai ;
Zheng, Yefeng ;
Lu, Huchuan ;
Cheng, Li .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9466-9476
[37]   Object Recognition in Noisy RGB-D Data [J].
Carlos Rangel, Jose ;
Morell, Vicente ;
Cazorla, Miguel ;
Orts-Escolano, Sergio ;
Garcia Rodriguez, Jose .
BIOINSPIRED COMPUTATION IN ARTIFICIAL SYSTEMS, PT II, 2015, 9108 :261-270
[38]   A Comparative Evaluation of 3D Keypoint Detectors in a RGB-D Object Dataset [J].
Filipe, Silvio ;
Alexandre, Luis A. .
PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS (VISAPP), VOL 1, 2014, :476-483
[39]   3D object detection: Learning 3D bounding boxes from scaled down 2D bounding boxes in RGB-D images [J].
Rahman, Mohammad Muntasir ;
Tan, Yanhao ;
Xue, Jian ;
Shao, Ling ;
Lu, Ke .
INFORMATION SCIENCES, 2019, 476 :147-158
[40]   Particle swarm optimization for 3D object tracking in RGB-D images [J].
dos Santos Junior, Jose Guedes ;
Silva do Monte Lima, Joan Paulo .
COMPUTERS & GRAPHICS-UK, 2018, 76 :167-180