Precision medicine in diabetes: an opportunity for clinical translation

被引:27
作者
Merino, Jordi [1 ,2 ,3 ,4 ]
Florez, Jose C. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Massachusetts Gen Hosp, Diabet Unit, Simches Res Bldg,CPZN 5-250,185 Cambridge St, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Ctr Genom Med, Simches Res Bldg,CPZN 5-250,185 Cambridge St, Boston, MA 02114 USA
[3] Broad Inst MIT & Harvard, Program Metab, Cambridge, MA USA
[4] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA USA
[5] Harvard Med Sch, Dept Med, Boston, MA USA
基金
欧盟地平线“2020”;
关键词
precision medicine; diabetes; diabetes heterogeneity; omics; GENOME-WIDE ASSOCIATION; GENETIC RISK SCORE; BODY-MASS INDEX; INSULIN-RESISTANCE; SUSCEPTIBILITY LOCI; GLUCOKINASE MUTATIONS; MOLECULAR-GENETICS; GLYCEMIC RESPONSE; GUT MICROBIOTA; METABOLOMICS;
D O I
10.1111/nyas.13588
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metabolic disorders present a public health challenge of staggering proportions. In diabetes, there is an urgent need to better understand disease heterogeneity, clinical trajectories, and related comorbidities. A pressing and timely question is whether we are ready for precision medicine in diabetes. Some biological insights that have emerged during the last decade have already been used to direct clinical decision making, especially in monogenic forms of diabetes. However, much work is necessary to integrate high-dimensional explorations into complex disease architectures, less penetrant biological alterations, and broader phenotypes, such as type 2 diabetes. In addition, for precision medicine to take hold in diabetes, reproducibility, interpretability, and actionability remain key guiding objectives. In this review, we examine how mounting data sets generated during the last decade to understand biological variability are now inspiring new venues to clarify diabetes nosology and ultimately translate findings into more effective prevention and treatment strategies.
引用
收藏
页码:140 / 152
页数:13
相关论文
共 113 条
[91]   Prevalence of Vascular Complications Among Patients With Glucokinase Mutations and Prolonged, Mild Hyperglycemia [J].
Steele, Anna M. ;
Shields, Beverley M. ;
Wensley, Kirsty J. ;
Colclough, Kevin ;
Ellard, Sian ;
Hattersley, Andrew T. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2014, 311 (03) :279-286
[92]   From profiles to function in epigenomics [J].
Stricker, Stefan H. ;
Koferle, Anna ;
Beck, Stephan .
NATURE REVIEWS GENETICS, 2017, 18 (01) :51-66
[93]   Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia [J].
Stride, Amanda ;
Shields, Beverley ;
Gill-Carey, Olivia ;
Chakera, Ali J. ;
Colclough, Kevin ;
Ellard, Sian ;
Hattersley, Andrew T. .
DIABETOLOGIA, 2014, 57 (01) :54-56
[94]   Management of type 2 diabetes: new and future developments in treatment [J].
Tahrani, Abd A. ;
Bailey, Clifford J. ;
Del Prato, Stefano ;
Barnett, Anthony H. .
LANCET, 2011, 378 (9786) :182-197
[95]   Deep sequencing of 10,000 human genomes [J].
Telenti, Amalio ;
Pierce, Levi C. T. ;
Biggs, William H. ;
di Iulio, Julia ;
Wong, Emily H. M. ;
Fabani, Martin M. ;
Kirkness, Ewen F. ;
Moustafa, Ahmed ;
Shah, Naisha ;
Xie, Chao ;
Brewerton, Suzanne C. ;
Bulsara, Nadeem ;
Garner, Chad ;
Metzker, Gary ;
Sandoval, Efren ;
Perkins, Brad A. ;
Och, Franz J. ;
Turpaz, Yaron ;
Venter, J. Craig .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (42) :11901-11906
[96]   The many faces of diabetes: a disease with increasing heterogeneity [J].
Tuomi, Tiinamaija ;
Santoro, Nicola ;
Caprio, Sonia ;
Cai, Mengyin ;
Weng, Jianping ;
Groop, Leif .
LANCET, 2014, 383 (9922) :1084-1094
[97]   Ketosis-prone type 2 diabetes: Time to revise the classification of diabetes [J].
Umpierrez, Guillermo E. .
DIABETES CARE, 2006, 29 (12) :2755-2757
[98]   Five Years of GWAS Discovery [J].
Visscher, Peter M. ;
Brown, Matthew A. ;
McCarthy, Mark I. ;
Yang, Jian .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (01) :7-24
[99]   Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis [J].
Voight, Benjamin F. ;
Scott, Laura J. ;
Steinthorsdottir, Valgerdur ;
Morris, Andrew P. ;
Dina, Christian ;
Welch, Ryan P. ;
Zeggini, Eleftheria ;
Huth, Cornelia ;
Aulchenko, Yurii S. ;
Thorleifsson, Gudmar ;
McCulloch, Laura J. ;
Ferreira, Teresa ;
Grallert, Harald ;
Amin, Najaf ;
Wu, Guanming ;
Willer, Cristen J. ;
Raychaudhuri, Soumya ;
McCarroll, Steve A. ;
Langenberg, Claudia ;
Hofmann, Oliver M. ;
Dupuis, Josee ;
Qi, Lu ;
Segre, Ayellet V. ;
van Hoek, Mandy ;
Navarro, Pau ;
Ardlie, Kristin ;
Balkau, Beverley ;
Benediktsson, Rafn ;
Bennett, Amanda J. ;
Blagieva, Roza ;
Boerwinkle, Eric ;
Bonnycastle, Lori L. ;
Bostrom, Kristina Bengtsson ;
Bravenboer, Bert ;
Bumpstead, Suzannah ;
Burtt, Noisel P. ;
Charpentier, Guillaume ;
Chines, Peter S. ;
Cornelis, Marilyn ;
Couper, David J. ;
Crawford, Gabe ;
Doney, Alex S. F. ;
Elliott, Katherine S. ;
Elliott, Amanda L. ;
Erdos, Michael R. ;
Fox, Caroline S. ;
Franklin, Christopher S. ;
Ganser, Martha ;
Gieger, Christian ;
Grarup, Niels .
NATURE GENETICS, 2010, 42 (07) :579-U155
[100]   Metabolite Traits and Genetic Risk Provide Complementary Information for the Prediction of Future Type 2 Diabetes [J].
Walford, Geoffrey A. ;
Porneala, Bianca C. ;
Dauriz, Marco ;
Vassy, Jason L. ;
Cheng, Susan ;
Rhee, Eugene P. ;
Wang, Thomas J. ;
Meigs, James B. ;
Gerszten, Robert E. ;
Florez, Jose C. .
DIABETES CARE, 2014, 37 (09) :2508-2514