Effects of stacking fault energy on deformation induced grain boundary relaxation in nanograined Cu alloys

被引:44
作者
Sun, Y. A. [1 ,2 ]
Luo, Z. P. [1 ]
Li, X. Y. [1 ]
Lu, K. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
关键词
Nanograined metals; Grain boundary relaxation; Thermal stability; Stacking fault energy; Cu alloys; MICROSTRUCTURAL EVOLUTION; THERMAL-STABILITY; MECHANICAL-PROPERTIES; NANOSTRUCTURED CU; PURE COPPER; AL; METALS; NUCLEATION; STRENGTH; NI;
D O I
10.1016/j.actamat.2022.118256
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deformation induced grain boundary (GB) relaxation with resultant enhancements in thermal stability was observed in various metals with grain sizes below a critical size. In this study, effects of stacking fault energy (SFE) on the GB relaxation and thermal stability are investigated in several Cu-Ni and Cu-Al alloys with gradient nanograined samples prepared using the surface mechanical grinding treatment. For each alloy, thermal stability drops with a decreasing grain size from submicrometers to about 70 nm. However, two distinct grain size dependences of thermal stability were observed below 70 nm. For Cu-10Ni and Cu-5Ni alloys with higher SFEs than Cu, thermal stability increases for smaller grains, similar to that in pure Cu. For Cu-10Al and Cu-5Al with lower SFEs than Cu, as grain sizes decrease the thermal stability elevates firstly and then drops, exhibiting a stability peak at a certain size. The observed thermal stability in the Cu alloys below 70 nm can be attributed to the GB relaxation induced by plastic deformation dominated by partial dislocation activities. The different behaviors of GB relaxation in these Cu alloys demonstrated its obvious dependence on SFE, which determined the governing deformation mechanisms and hence the degree of relaxation of GBs.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 65 条
[1]   Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J].
An, X. H. ;
Wu, S. D. ;
Wang, Z. G. ;
Zhang, Z. F. .
PROGRESS IN MATERIALS SCIENCE, 2019, 101 :1-45
[2]   Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing [J].
An, X. H. ;
Wu, S. D. ;
Zhang, Z. F. ;
Figueiredo, R. B. ;
Gao, N. ;
Langdon, T. G. .
SCRIPTA MATERIALIA, 2012, 66 (05) :227-230
[3]   Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion [J].
An, X. H. ;
Lin, Q. Y. ;
Wu, S. D. ;
Zhang, Z. F. ;
Figueiredo, R. B. ;
Gao, N. ;
Langdon, T. G. .
PHILOSOPHICAL MAGAZINE, 2011, 91 (25) :3307-3326
[4]   Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu-Al alloys during thermal annealing [J].
An, X. H. ;
Qu, S. ;
Wu, S. D. ;
Zhang, Z. F. .
JOURNAL OF MATERIALS RESEARCH, 2011, 26 (03) :407-415
[5]   High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys [J].
An, X. H. ;
Han, W. Z. ;
Huang, C. X. ;
Zhang, P. ;
Yang, G. ;
Wu, S. D. ;
Zhang, Z. F. .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[6]   The wave-lengths of the silver, molybdenum, copper, iron and chromium K alpha(1) lines [J].
Bearden, JA .
PHYSICAL REVIEW, 1933, 43 (02) :92-97
[7]   Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J].
Cai, T. ;
Li, K. Q. ;
Zhang, Z. J. ;
Zhang, P. ;
Liu, R. ;
Yang, J. B. ;
Zhang, Z. F. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 53 :61-65
[8]  
Cai W, 2016, IMPERFECTIONS IN CRYSTALLINE SOLIDS, P1
[9]   Scale law of complex deformation transitions of nanotwins in stainless steel [J].
Chen, A. Y. ;
Zhu, L. L. ;
Sun, L. G. ;
Liu, J. B. ;
Wang, H. T. ;
Wang, X. Y. ;
Yang, J. H. ;
Lu, J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Design of Stable Nanocrystalline Alloys [J].
Chookajorn, Tongjai ;
Murdoch, Heather A. ;
Schuh, Christopher A. .
SCIENCE, 2012, 337 (6097) :951-954