Quantum chemical modeling of iron oxide magnetic nanoparticles functionalized with cytarabine

被引:15
作者
Shabani, Zeynab [1 ]
Morsali, Ali [1 ,2 ]
Bozorgmehr, Mohammad Reza [1 ,2 ]
Beyramabadi, S. Ali [1 ,2 ]
机构
[1] Islamic Azad Univ, Dept Chem, Mashhad Branch, Mashhad, Iran
[2] Islamic Azad Univ, Res Ctr Anim Dev Appl Biol, Mashhad Branch, Mashhad 917568, Iran
关键词
Iron oxide nanoparticles; Cytarabine; AIM analysis; Covalent and noncovalent functionalization; Binding energies; FLUTAMIDE ANTICANCER DRUG; CARBON NANOTUBE; INORGANIC NANOPARTICLES; THERMOCHEMICAL KINETICS; SURFACE MODIFICATION; DENSITY FUNCTIONALS; DELIVERY-SYSTEM; IN-VIVO; CHEMOTHERAPY; ADSORPTION;
D O I
10.1016/j.cplett.2019.01.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noncovalent functionalization of iron oxide nanoparticles (ION) with cytarabine anticancer drug (CYT) has been studied at B3LYP and M06-2X functionals using seven different configurations (ION/CYT1-7) and Fe-6(OH)(18)(H2O)(6) cluster model for ION. The energetic stability of seven noncovalent structures was determined by the calculation of adsorption energies. The AIM studies demonstrated that the noncovalent functionalization mainly occurs through intermolecular hydrogen bonds. The reaction between ION and CYT may produce seven different products (IONCYT1-7/H2O). The high barrier of IONCYT2/H2O (via CH2OH) product is lower than that of IONCYT3/H2O (via OH) product and therefore is the preferred pathway for covalent functionalization.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 80 条
[1]   Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine [J].
Akbarzadeh, Abolfazl ;
Samiei, Mohamad ;
Davaran, Soodabeh .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-13
[2]   Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans [J].
Al-Jamal, Khuloud T. ;
Bai, Jie ;
Wang, Julie Tzu-Wen ;
Protti, Andrea ;
Southern, Paul ;
Bogart, Lara ;
Heidari, Hamed ;
Li, Xinjia ;
Cakebread, Andrew ;
Asker, Dan ;
Al-Jamal, Wafa T. ;
Shah, Ajay ;
Bals, Sara ;
Sosabowski, Jane ;
Pankhurst, Quentin A. .
NANO LETTERS, 2016, 16 (09) :5652-5660
[3]  
[Anonymous], 2013, TK GRISTMILL SOFTWAR
[4]   Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting [J].
Arias, Jose L. ;
Gallardo, Visitacion ;
Adolfina Ruiz, M. ;
Delgado, Angel V. .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2008, 69 (01) :54-63
[5]   Magnetic nanoparticles for drug delivery [J].
Arruebo, Manuel ;
Fernandez-Pacheco, Rodrigo ;
Ibarra, M. Ricardo ;
Santamaria, Jesus .
NANO TODAY, 2007, 2 (03) :22-32
[6]   Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective [J].
Auffan, Melanie ;
Rose, Jerome ;
Bottero, Jean-Yves ;
Lowry, Gregory V. ;
Jolivet, Jean-Pierre ;
Wiesner, Mark R. .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :634-641
[7]   A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS [J].
BADER, RFW .
CHEMICAL REVIEWS, 1991, 91 (05) :893-928
[8]   Functionalisation of magnetic nanoparticles for applications in biomedicine [J].
Berry, CC ;
Curtis, ASG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) :R198-R206
[9]   Magnetic field triggered drug release from lipid microcapsule containing lipid-coated magnetic nanoparticles [J].
Bi, Hongmei ;
Han, Xiaojun .
CHEMICAL PHYSICS LETTERS, 2018, 706 :455-460
[10]   REMARKS ON THE USE OF THE APPARENT SURFACE-CHARGES (ASC) METHODS IN SOLVATION PROBLEMS - ITERATIVE VERSUS MATRIX-INVERSION PROCEDURES AND THE RENORMALIZATION OF THE APPARENT CHARGES [J].
CAMMI, R ;
TOMASI, J .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1449-1458