Influence of graphite edge crystallographic orientation on the first lithium intercalation in Li-ion battery

被引:13
作者
Bernardo, Ph [1 ,2 ]
Le Meins, J-M. [1 ,4 ]
Vidal, L. [1 ]
Dentzer, J. [1 ]
Gadiou, R. [1 ,4 ]
Maerkle, W. [2 ]
Novak, P. [2 ]
Spahr, M. E. [3 ]
Vix-Guterl, C. [1 ,4 ]
机构
[1] CNRS, Inst Sci Mat Mulhouse, LRC, F-68057 Mulhouse, France
[2] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[3] Imerys Graphite & Carbon SA, CH-6743 Bodio Ti, Switzerland
[4] CNRS, Reseau Stockage Electrochim Energie RS2E, FR3459, F-80039 Amiens, France
关键词
CARBON; INSERTION; ELECTROLYTES; MICROSCOPY; BEHAVIOR; ALKALI;
D O I
10.1016/j.carbon.2015.05.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphite is a widely used anode electrode material for Li-ion batteries. When the anode is polarized to a low potential, the electrolyte reduction products form a film called SEI (Solid Electrolyte Interphase) playing a crucial role in the reversibility of the electrochemical cycling. This SEI layer is preferentially formed through the carbon edge planes that can be divided into two main categories with different reactivity: zigzag and armchair edges. Main objective of this work is to experimentally study the influence of the carbon edge atoms configuration on SEI formation and consequently on the electrochemical performance of the electrode. In this aim, a preferential etching method based on oxygen or water gasification was first developed to control zigzag and armchair edge concentration. A range of graphite samples having different reactivity could be prepared and electrochemically tested. Experimental results point out that the carbon edge atom configuration is an important parameter controlling the reactivity of the graphite toward the electrolyte. In particular, a carbon material having a high concentration of zigzag edge carbon atoms is not recommended for the formation of an ad hoc SEI. As a result, the co-intercalation of solvent is enhanced leading to an exfoliation tendency of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 27 条
[1]   Failure and stabilization mechanisms of graphite electrodes [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Schechter, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (12) :2195-2206
[2]   Influence of graphite surface properties on the first electrochemical lithium intercalation [J].
Bernardo, Ph. ;
Dentzer, J. ;
Gadiou, R. ;
Maerkle, W. ;
Goers, D. ;
Novak, P. ;
Spahr, M. E. ;
Vix-Guterl, C. .
CARBON, 2011, 49 (14) :4867-4876
[3]  
BESENHAR.JO, 1974, J ELECTROANAL CHEM, V53, P329, DOI 10.1016/S0022-0728(74)80146-4
[4]  
Bonnetain L, 1965, CARBONES, V2, P277
[5]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[6]   SEI film formation on highly crystalline graphitic materials in lithium-ion batteries [J].
Buqa, H ;
Würsig, A ;
Vetter, J ;
Spahr, ME ;
Krumeich, F ;
Novák, P .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :385-390
[7]   On the irreversible capacities of disordered carbons in lithium-ion rechargeable batteries [J].
Guerin, K ;
Fevrier-Bouvier, A ;
Flandrois, S ;
Simon, B ;
Biensan, P .
ELECTROCHIMICA ACTA, 2000, 45 (10) :1607-1615
[8]   Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution [J].
Inaba, M ;
Siroma, Z ;
Funabiki, A ;
Ogumi, Z ;
Abe, T ;
Mizutani, Y ;
Asano, M .
LANGMUIR, 1996, 12 (06) :1535-1540
[9]  
Leine NR, 1963, J PHYS CHEM-US, V67, P2030
[10]   Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries [J].
Ng, S. H. ;
Vix-Guterl, C. ;
Bernardo, Ph. ;
Tran, N. ;
Ufheil, J. ;
Buqa, H. ;
Dentzer, J. ;
Gadiou, R. ;
Spahr, M. E. ;
Goers, D. ;
Novak, P. .
CARBON, 2009, 47 (03) :705-712