Exact controllability of a Rayleigh beam with a single boundary control

被引:12
作者
Ozer, A. Ozkan [1 ]
Hansen, Scott W. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Rayleigh beam; Boundary control; Exact controllability; Kirchhoff plate; Continuous observability; Ingham's theorem; STABILIZATION; PLATES; SYSTEMS;
D O I
10.1007/s00498-011-0069-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove exact boundary controllability for the Rayleigh beam equation phi(tt) - alpha phi(ttxx) + A phi(xxxx) = 0, 0 < x <l, t > 0 with a single boundary control active at one end of the beam. We consider all combinations of clamped and hinged boundary conditions with the control applied to either the moment phi(xx) (l,t) or the rotation angle phi(x) (l,t)at an end of the beam. In each case, exact controllability is obtained on the space of optimal regularity for L (2)(0, T) controls for L-2(0, T) controls for T > 2l root alpha/a). In certain cases, e.g., the clamped case, the optimal regularity space involves a quotient in the velocity component. In other cases, where the regularity for the observed problem is below the energy level, a quotient space may arise in solutions of the observed problem.
引用
收藏
页码:199 / 222
页数:24
相关论文
共 22 条
[1]   Controllability of the Kirchhoff system for beams as a limit of the Mindlin-Timoshenko system [J].
Araruna, F. D. ;
Zuazua, E. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1909-1938
[2]  
Eller M., 2001, Journal of Inverse and ILL-Posed Problems, V9, P103
[3]  
Eller M, 2001, DISCRET CONTIN DYN S, V7, P283
[4]  
Hansen S.W., 1997, Discrete Contin. Dyn. Syst, V3, P59
[5]   Several related models for multilayer sandwich plates [J].
Hansen, SW .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (08) :1103-1132
[6]   Boundary control of a linear thermoelastic beam [J].
Hansen, SW ;
Zhang, BY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) :182-205
[7]  
Hansen SW, 2005, DISCRET CONTIN DYN S, P365
[8]  
Hansen SW, 2011, EXACT CONTROLLABILIT, DOI [10.1051/cocv/2010041, DOI 10.1051/COCV/2010041]
[9]  
Komornik V., 1989, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V10, P415, DOI 10.5802/afst.685
[10]  
Komornik V., 2005, FOURIER SERIES CONTR, DOI [10.1007/b139040, DOI 10.1007/B139040]