CRITICAL POINTS OF THE N-VORTEX HAMILTONIAN IN BOUNDED PLANAR DOMAINS AND STEADY STATE SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS

被引:29
作者
Bartsch, Thomas [1 ]
Pistoia, Angela [2 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
vortex dynamics; point vortices; counter-rotating vortices; steady states of the Euler flow; CONCENTRATING SOLUTIONS; ELLIPTIC PROBLEM; NODAL SOLUTIONS; SINH-POISSON; DIMENSIONS; EXISTENCE; VORTICES; MOTION;
D O I
10.1137/140981253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of critical points of the N-vortex Hamiltonian H-KR(x(1),..., x(N)) = Sigma(N)(i=1)Gamma(2)(i) h(x(i)) +Sigma(i,j=1) (N)(j not equal k) Gamma(i)Gamma(j)G(x(i), x(j))+ 2 Sigma(N)(i=1) Gamma(i)psi(0)(x(i)) in a bounded domain Omega subset of R-2 which may be simply or multiply connected. Here G denotes the Green function for the Dirichlet Laplace operator in Omega, more generally a hydrodynamic Green function, and h the Robin function. Moreover psi(0) is an element of C-1((Omega) over bar) is a harmonic function on Omega. We obtain new critical points x = (x(1),..., x(N)) for N = 3 or N = 4 under conditions on the vorticities Gamma(i) is an element of R \ {0}. These critical points correspond to point vortex equilibria of the Euler equation in vorticity form. The case Gamma(i) = (-1)(i) of counterrotating vortices with identical vortex strength is included. The point vortex equilibria can be desingularized to obtain smooth steady state solutions of the Euler equations for an ideal fluid. The velocity of these steady states will be irrotational except for N vorticity blobs near x(1),..., x(N).
引用
收藏
页码:726 / 744
页数:19
相关论文
共 24 条
[1]   Vortex crystals [J].
Aref, H ;
Newton, PK ;
Stremler, MA ;
Tokieda, T ;
Vainchtein, DL .
ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 :1-79
[2]   Point vortex dynamics: A classical mathematics playground [J].
Aref, Hassan .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[3]   Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation [J].
Bartolucci, Daniele ;
Pistoia, Angela .
IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (06) :706-729
[4]  
Bartsch T., ARXIV14034533
[5]   N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations (vol 297, pg 653, 2010) [J].
Bartsch, Thomas ;
Pistoia, Angela ;
Weth, Tobias .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) :1107-1107
[6]   N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations [J].
Bartsch, Thomas ;
Pistoia, Angela ;
Weth, Tobias .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :653-686
[7]   Regularization of Point Vortices Pairs for the Euler Equation in Dimension Two [J].
Cao, Daomin ;
Liu, Zhongyuan ;
Wei, Juncheng .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (01) :179-217
[8]   Singular limits in Liouville-type equations [J].
del Pino, M ;
Kowalczyk, M ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (01) :47-81
[9]   On the existence of blowing-up solutions for a mean field equation [J].
Esposito, P ;
Grossi, M ;
Pistoia, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02) :227-257
[10]   On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity [J].
Esposito, Pierpaolo ;
Musso, Monica ;
Pistoia, Angela .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :497-519