Automatic Recognition of Soybean Leaf Diseases Using UAV Images and Deep Convolutional Neural Networks

被引:98
|
作者
Tetila, Everton Castelao [1 ]
Machado, Bruno Brandoli [2 ,3 ]
Menezes, Gabriel Kirsten [2 ,3 ]
Oliveira, Adair da Silva [2 ,3 ]
Alvarez, Marco [4 ]
Amorim, Willian Paraguassu [1 ]
de Souza Belete, Nicolas Alessandro [2 ,5 ,6 ]
da Silva, Gercina Goncalves [2 ,3 ]
Pistori, Hemerson [2 ,3 ]
机构
[1] Fed Univ Grande Dourados, Fac Exact Sci & Technol, Dourados 79825070, MS, Brazil
[2] Univ Catolica Dom Bosco, Postgrad Program Local Dev, BR-79117010 Campo Grande, MS, Brazil
[3] Univ Fed Mato Grosso do Sul, Fac Comp, BR-79070900 Campo Grande, MS, Brazil
[4] Univ Rhode Isl, Dept Comp Sci & Stat, Kingston, RI 02881 USA
[5] Fed Univ Rondonia, Prod Engn Dept, BR-76801016 Cacoal, Brazil
[6] Univ Porto, Fac Engn, P-4099002 Porto, Portugal
关键词
Diseases; Image segmentation; Deep learning; Training; Agriculture; Inspection; Image recognition; Aerial imagery; deep learning; precision agriculture; soybean leaf diseases; unmanned aerial vehicle (UAV)-based remote sensing; IDENTIFICATION;
D O I
10.1109/LGRS.2019.2932385
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Plant diseases are a crucial issue in agriculture. An accurate and automatic identification of leaf diseases could help to develop an early response to reduce economic losses. Recent research in plant diseases has adopted deep neural networks. However, such research has used the models as a black-box passing the labeled images through the networks. This letter presents an analysis of the network weights for the automatic recognition of soybean leaf diseases applied to images taken straight from a small and cheap unmanned aerial vehicle (UAV). To achieve high accuracy, we evaluated four deep neural network models trained with different parameters for fine-tuning (FT) and transfer learning. Data augmentation and dropout were used during the network training to avoid overfitting. Our methodology consists of using the SLIC method to segment the plant leaves in the top-view images obtained during the flight. We tested our data set created from real flight inspections in an end-to-end computer vision approach. Results strongly suggest that the FT of parameters substantially improves the identification accuracy.
引用
收藏
页码:903 / 907
页数:5
相关论文
共 50 条
  • [41] Automatic Detection of the Inner Ears in Head CT Images Using Deep Convolutional Neural Networks
    Zhang, Dongqing
    Noble, Jack H.
    Dawant, Benoit M.
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [42] Automatic Tobacco Plant Detection in UAV Images via Deep Neural Networks
    Fan, Zhun
    Lu, Jiewei
    Gong, Maoguo
    Xie, Honghui
    Goodman, Erik D.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (03) : 876 - 887
  • [43] Automatic Food Recognition Using Deep Convolutional Neural Networks with Self-attention Mechanism
    Rahib Abiyev
    Joseph Adepoju
    Human-Centric Intelligent Systems, 2024, 4 (1): : 171 - 186
  • [44] Automatic Saudi Arabian License Plate Detection and Recognition Using Deep Convolutional Neural Networks
    Driss, Maha
    Almomani, Iman
    Al-Suhaimi, Rahaf
    Al-Harbi, Hanan
    ADVANCES ON INTELLIGENT INFORMATICS AND COMPUTING: HEALTH INFORMATICS, INTELLIGENT SYSTEMS, DATA SCIENCE AND SMART COMPUTING, 2022, 127 : 3 - 15
  • [45] Fruits and Vegetable Diseases Recognition Using Convolutional Neural Networks
    Amin, Javaria
    Anjum, Muhammad Almas
    Sharif, Muhammad
    Kadry, Seifedine
    Nam, Yunyoung
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 619 - 635
  • [46] MULTILABEL CLASSIFICATION OF UAV IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS
    Zeggada, Abdallah
    Melgani, Farid
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5083 - 5086
  • [47] A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases
    Dhaka, Vijaypal Singh
    Meena, Sangeeta Vaibhav
    Rani, Geeta
    Sinwar, Deepak
    Kavita
    Ijaz, Muhammad Fazal
    Wozniak, Marcin
    SENSORS, 2021, 21 (14)
  • [48] Automatic recognition of strawberry diseases and pests using convolutional neural network
    Dong, Cheng
    Zhang, Zhiwang
    Yue, Jun
    Zhou, Li
    SMART AGRICULTURAL TECHNOLOGY, 2021, 1
  • [49] A Deep Learning Approach for Automatic Ionogram Parameters Recognition With Convolutional Neural Networks
    Sherstyukov, Ruslan
    Moges, Samson
    Kozlovsky, Alexander
    Ulich, Thomas
    EARTH AND SPACE SCIENCE, 2024, 11 (10)
  • [50] Automatic Recognition of Mild Cognitive Impairment from MRI Images Using Expedited Convolutional Neural Networks
    Wang, Shuqiang
    Shen, Yanyan
    Chen, Wei
    Xiao, Tengfei
    Hu, Jinxing
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2017, PT I, 2017, 10613 : 373 - 380