Matching preclusion and conditional edge-fault Hamiltonicity of binary de Bruijn graphs

被引:13
作者
Lin, Ruizhi [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Binary de Bruijn graph; Edge-fault Hamiltonicity; Perfect matching; Matching preclusion set; CIRCULATING SHIFT REGISTER; DOUBLE-ADJACENCIES; DEBRUIJN NETWORKS; LINK FAULTS; CYCLES; CUBES;
D O I
10.1016/j.dam.2017.07.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In interconnection networks, matching preclusion is a measure of robustness when there is a link failure. Let G be a graph with an even number of vertices. The matching preclusion number of G is the minimum number of edges whose deletion leaves the resulting graph without a perfect matching, and the conditional matching preclusion number of G is the minimum number of edges whose deletion results in a graph with no isolated vertices and without a perfect matching. In this paper, we study these problems for undirected binary de Bruijn graph UB(n). As an essential preparation, we obtain conditional edge-fault Hamiltonicity of binary de Bruijn graph B(n). Then we obtain matching preclusion number and conditional matching preclusion number of UB(n) for n >= 4 and classify all optimal matching preclusion sets and optimal conditional matching preclusion sets. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 35 条
[1]  
[Anonymous], 2007, GRAPH THEORY
[2]  
BERMOND JC, 1989, HYPERCUBE AND DISTRIBUTED COMPUTERS, P279
[3]   BROADCASTING AND GOSSIPING IN DEBRUIJN NETWORKS [J].
BERMOND, JC ;
FRAIGNIAUD, P .
SIAM JOURNAL ON COMPUTING, 1994, 23 (01) :212-225
[4]  
Brigham R.C., 2005, Congressus Numerantium, V174, P185
[5]   Matching preclusion and conditional matching preclusion problems for the folded Petersen cube [J].
Cheng, Eddie ;
Connolly, Robert ;
Melekian, Christoper .
THEORETICAL COMPUTER SCIENCE, 2015, 576 :30-44
[6]   Matching preclusion and conditional matching preclusion problems for tori and related Cartesian products [J].
Cheng, Eddie ;
Liptak, Laszlo .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) :1699-1716
[7]   Conditional matching preclusion for the arrangement graphs [J].
Cheng, Eddie ;
Lipman, Marc J. ;
Liptak, Laszlo ;
Sherman, David .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (45) :6279-6289
[8]   Conditional matching preclusion sets [J].
Cheng, Eddie ;
Lesniak, Linda ;
Lipman, Marc J. ;
Liptak, Laszlo .
INFORMATION SCIENCES, 2009, 179 (08) :1092-1101
[9]   MATCHING PRECLUSION FOR ALTERNATING GROUP GRAPHS AND THEIR GENERALIZATIONS [J].
Cheng, Eddie ;
Lesniak, Linda ;
Lipman, Marc J. ;
Liptak, Laszlo .
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2008, 19 (06) :1413-1437
[10]  
de Bruijn N.G., 1949, PROC KONINKLIJKE NED, VA49, P758