ROBUST EQUILIBRATED RESIDUAL ERROR ESTIMATOR FOR DIFFUSION PROBLEMS: CONFORMING ELEMENTS

被引:29
作者
Cai, Zhiqiang [1 ]
Zhang, Shun [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
a posteriori error estimator; equilibrated residual error estimator; finite element; ELLIPTIC-EQUATIONS; RECOVERY; BOUNDS;
D O I
10.1137/100803857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes an equilibrated residual a posteriori error estimator for the diffusion problem. The estimator, which is a modification of those in [D. Braess and J. Schoberl, Math. Comput., 77 (2008), pp. 651-672; R. Verfurth, SIAM J. Numer. Anal., 47 (2009), pp. 3180-3194], is based on the Prager-Synge identity and on a local recovery of an equilibrated flux. Numerical results for an interface test problem show that the modification is necessary for the robustness of the estimator. When the distribution of diffusion coefficients is local quasi-monotone, it is shown theoretically that the estimator is robust with respect to the size of jumps.
引用
收藏
页码:151 / 170
页数:20
相关论文
共 31 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]   Robust a posteriori error estimation for nonconforming finite element approximation [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2320-2341
[3]  
Ainsworth M., 2000, PUR AP M-WI
[4]   A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :189-204
[5]  
[Anonymous], 2007, FINITE ELEMENTE
[6]  
[Anonymous], 1996, ADV NUMER MATH
[7]  
[Anonymous], POSTERIORI ERROR EST
[8]   ANALYSIS OF MIXED METHODS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J ;
PITARANTA, J .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1039-1062
[9]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[10]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135