Phased-array sources based on nonlinear metamaterial nanocavities

被引:125
作者
Wolf, Omri [1 ,2 ]
Campione, Salvatore [1 ,2 ]
Benz, Alexander [1 ,2 ]
Ravikumar, Arvind P. [3 ]
Liu, Sheng [1 ,2 ]
Luk, Ting S. [1 ,2 ]
Kadlec, Emil A. [2 ]
Shaner, Eric A. [2 ]
Klem, John F. [2 ]
Sinclair, Michael B. [2 ]
Brener, Igal [1 ,2 ]
机构
[1] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Div Sci & Technol, Albuquerque, NM 87185 USA
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
INTERSUBBAND TRANSITIONS; LIGHT; METASURFACES; REFRACTION; PATCHES;
D O I
10.1038/ncomms8667
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (similar to 5 mu m): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
引用
收藏
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 2007, Modern Antenna Handbook
[2]  
Bayatpur F., 2009, RAD C 2009 IEEE PAS, P1
[3]   Strong coupling in the sub-wavelength limit using metamaterial nanocavities [J].
Benz, A. ;
Campione, S. ;
Liu, S. ;
Montano, I. ;
Klem, J. F. ;
Allerman, A. ;
Wendt, J. R. ;
Sinclair, M. B. ;
Capolino, F. ;
Brener, I. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures [J].
Benz, Alexander ;
Campione, Salvatore ;
Moseley, Michael W. ;
Wierer, Jonathan J., Jr. ;
Allerman, Andrew A. ;
Wendt, Joel R. ;
Brener, Igal .
ACS PHOTONICS, 2014, 1 (10) :906-911
[5]   Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces [J].
Campione, Salvatore ;
Basilio, Lorena I. ;
Warne, Larry K. ;
Sinclair, Michael B. .
OPTICS EXPRESS, 2015, 23 (03) :2293-2307
[6]   Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells [J].
Campione, Salvatore ;
Benz, Alexander ;
Klem, John F. ;
Sinclair, Michael B. ;
Brener, Igal ;
Capolino, Filippo .
PHYSICAL REVIEW B, 2014, 89 (16)
[7]   Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells [J].
Campione, Salvatore ;
Benz, Alexander ;
Sinclair, Michael B. ;
Capolino, Filippo ;
Brener, Igal .
APPLIED PHYSICS LETTERS, 2014, 104 (13)
[8]   COUPLED-QUANTUM-WELL SEMICONDUCTORS WITH GIANT ELECTRIC-FIELD TUNABLE NONLINEAR-OPTICAL PROPERTIES IN THE INFRARED [J].
CAPASSO, F ;
SIRTORI, C ;
CHO, AY .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (05) :1313-1326
[9]   Dual-Band Composite Right/Left-Handed (CRLH) Phased-Array Antenna [J].
Choi, Jun H. ;
Itoh, Tatsuo .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 :732-735
[10]   High-Efficiency Dielectric Huygens' Surfaces [J].
Decker, Manuel ;
Staude, Isabelle ;
Falkner, Matthias ;
Dominguez, Jason ;
Neshev, Dragomir N. ;
Brener, Igal ;
Pertsch, Thomas ;
Kivshar, Yuri S. .
ADVANCED OPTICAL MATERIALS, 2015, 3 (06) :813-820