Bayesian joint ordinal and survival modeling for breast cancer risk assessment

被引:15
作者
Armero, C. [1 ]
Forne, C. [2 ,3 ]
Rue, M. [2 ,4 ]
Forte, A. [1 ]
Perpinan, H. [1 ,5 ]
Gomez, G. [6 ]
Bare, M. [7 ]
机构
[1] Univ Valencia, Dept Stat & Operat Res, Doctor Moliner 50, E-46100 Burjassot, Spain
[2] Univ Lleida, Dept Basic Med Sci, IRBLleida, Avda Rovira Roure 80, Lleida 25198, Spain
[3] Oblikue Consulting, Barcelona, Spain
[4] Hlth Serv Res Network Chron Dis REDISSEC, Barcelona, Spain
[5] Generalitat Valenciana, Fdn Fomento Invest Sanitaria & Biomed FISABIO, Valencia, Spain
[6] Univ Politecn Cataluna, Dept Stat & Operat Res, Barcelona, Spain
[7] UAB, Clin Epidemiol & Canc Screening, Corp Sanitaria Parc Tauli,Parc Tauli S-N, Sabadell 08208, Spain
关键词
BI-RADS scale; Latent process; left-truncated proportional-hazards model; Proportional-odds cumulative logit model; CHAIN MONTE-CARLO; MAMMOGRAPHIC DENSITY; SCREENING-PROGRAM; LONGITUDINAL DATA; PROGNOSTIC-FACTORS; PREDICTION MODEL; COMPETING RISKS; EVENT DATA; TIME; WOMEN;
D O I
10.1002/sim.7065
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional-odds cumulative logit model. Time-to-event is modeled through a left-truncated proportional-hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects. General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event-free probabilities and predict future longitudinal marker values. The model is applied to the assessment of breast cancer risk in women attending a population-based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI-RADS) scale in biennial screening exams. (c) 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
引用
收藏
页码:5267 / 5282
页数:16
相关论文
共 59 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[3]   Joint modeling of two longitudinal outcomes and competing risk data [J].
Andrinopoulou, Eleni-Rosalina ;
Rizopoulos, Dimitris ;
Takkenberg, Johanna J. M. ;
Lesaffre, Emmanuel .
STATISTICS IN MEDICINE, 2014, 33 (18) :3167-3178
[4]   Risk prediction models of breast cancer: a systematic review of model performances [J].
Anothaisintawee, Thunyarat ;
Teerawattananon, Yot ;
Wiratkapun, Chollathip ;
Kasamesup, Vijj ;
Thakkinstian, Ammarin .
BREAST CANCER RESEARCH AND TREATMENT, 2012, 133 (01) :1-10
[5]   Bayesian joint modeling for assessing the progression of chronic kidney disease in children [J].
Armero, Carmen ;
Forte, Anabel ;
Perpinan, Hector ;
Jose Sanahuja, Maria ;
Agusti, Silvia .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (01) :298-311
[6]   Interval breast cancers in a community screening programme:: frequency, radiological classification and prognostic factors [J].
Bare, Marisa ;
Sentis, Melcior ;
Galceran, Jaume ;
Ameijide, Alberto ;
Andreu, Xavier ;
Ganau, Sergi ;
Tortajada, Lidia ;
Planas, Jaume .
EUROPEAN JOURNAL OF CANCER PREVENTION, 2008, 17 (05) :414-421
[7]   Relationship between the method of detection and prognostic factors for breast cancer in a community with a screening programme [J].
Bare, Marisa ;
Bonfill, Xavier ;
Andreu, Xavier .
JOURNAL OF MEDICAL SCREENING, 2006, 13 (04) :183-191
[8]   Factors related to non-participation in a population-based breast cancer screening programme [J].
Baré, ML ;
Montes, J ;
Florensa, R ;
Sentís, M ;
Donos, L .
EUROPEAN JOURNAL OF CANCER PREVENTION, 2003, 12 (06) :487-494
[9]   Prospective breast cancer risk prediction model for women undergoing screening mammography [J].
Barlow, William E. ;
White, Emily ;
Ballard-Barbash, Rachel ;
Vacek, Pamela M. ;
Titus-Ernstoff, Linda ;
Carney, Patricia A. ;
Tice, Jeffrey A. ;
Buist, Diana S. M. ;
Geller, Berta M. ;
Rosenberg, Robert ;
Yankaskas, Bonnie C. ;
Kerlikowske, Karla .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2006, 98 (17) :1204-1214
[10]  
Boyd NF, 1998, CANCER EPIDEM BIOMAR, V7, P1133