Product set phenomena for countable groups

被引:6
作者
Bjoerklund, Michael [1 ]
Fish, Alexander [2 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
芬兰科学院;
关键词
Ergodic Ramsey theory; Random walks on groups; Topological dynamics; Additive combinatorics;
D O I
10.1016/j.aim.2015.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop in this paper novel techniques to analyze local combinatorial structures in product sets of two subsets of a countable group which are "large" with respect to certain classes of (not necessarily invariant) means on the group. Our methods heavily utilize the theory of C*-algebras and random walks on groups. As applications of our methods, we extend and quantify a series of recent results by Jin, Bergelson-Furstenberg-Weiss, Beiglbock-Bergelson-Fish, Griesmer and Di Nasso-Lupini to general countable groups. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 113
页数:67
相关论文
共 22 条
[1]  
Aliprantis Charalambos D, 2006, A hitchhiker's guide
[2]  
[Anonymous], 1974, Real and Complex Analysis
[3]  
Babillot Martine., 2006, PROC CIMPA TIFR SCH, P1
[4]   Sumset phenomenon in countable amenable groups [J].
Beiglboeck, Mathias ;
Bergelson, Vitaly ;
Fish, Alexander .
ADVANCES IN MATHEMATICS, 2010, 223 (02) :416-432
[5]  
Bergelson V., 2006, TOPICS DISCRETE MATH, V26
[6]  
Bogolyubov N.N., 1939, Zap. Kafedry Mat. Fiziki Kiev, V4, P185
[7]   On dense free subgroups of Lie groups [J].
Breuillard, E ;
Gelander, T .
JOURNAL OF ALGEBRA, 2003, 261 (02) :448-467
[8]  
Di Nasso M., 2015, ILLINOIS J IN PRESS
[9]  
Folner Fol54a] Erling, 1954, MATH SCAND, V2, P5, DOI [10.7146/math.scand.a-10389, DOI 10.7146/MATH.SCAND.A-10389]
[10]  
Furstenberg H, 2010, CONTEMP MATH, V532, P1