Bottom-up Photonic Crystal Lasers

被引:107
作者
Scofield, Adam C. [1 ,2 ]
Kim, Se-Heon [3 ,4 ]
Shapiro, Joshua N. [1 ,2 ]
Lin, Andrew [1 ,2 ]
Liang, Baolai [1 ,2 ]
Scherer, Axel [3 ,4 ]
Huffaker, Diana L. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[4] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Nanopillar; nanowire; photonic crystal laser; low threshold; NANOWIRES; MODES; SLAB;
D O I
10.1021/nl2030163
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The directed growth of III-V nanopillars is used to demonstrate bottom-up photonic crystal lasers. Simultaneous formation of both the photonic band gap and active gain region is achieved via catalyst-free selective-area metal-organic chemical vapor deposition on masked GaAs substrates. The nanopillars implement a GaAs/InGaAs/GaAs axial double heterostructure for accurate, arbitrary placement of gain within the cavity and lateral InGaP shells to reduce surface recombination. The lasers operate single-mode at room temperature with low threshold peak power density of similar to 625 W/cm(2). Cavity resonance and lasing wavelength is lithographically defined by controlling pillar pitch and diameter to vary from 960 to 989 nm. We envision this bottom-up approach to pillar-based devices as a new platform for photonic systems integration.
引用
收藏
页码:5387 / 5390
页数:4
相关论文
共 30 条
[11]   Complete composition tunability of InGaN nanowires using a combinatorial approach [J].
Kuykendall, Tevye ;
Ulrich, Philipp ;
Aloni, Shaul ;
Yang, Peidong .
NATURE MATERIALS, 2007, 6 (12) :951-956
[12]   Epitaxial core-shell and core-multishell nanowire heterostructures [J].
Lauhon, LJ ;
Gudiksen, MS ;
Wang, CL ;
Lieber, CM .
NATURE, 2002, 420 (6911) :57-61
[13]   Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure [J].
Li, D. B. ;
Ning, C. Z. .
PHYSICAL REVIEW B, 2009, 80 (15)
[14]   Photonic crystal laser sources for chemical detection [J].
Loncar, M ;
Scherer, A ;
Qiu, YM .
APPLIED PHYSICS LETTERS, 2003, 82 (26) :4648-4650
[15]   Epitaxial III-V nanowires on silicon [J].
Mårtensson, T ;
Svensson, CPT ;
Wacaser, BA ;
Larsson, MW ;
Seifert, W ;
Deppert, K ;
Gustafsson, A ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2004, 4 (10) :1987-1990
[16]   Semiconductor nanolasers [J].
Ning, C. Z. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (04) :774-788
[17]   Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy [J].
Noborisaka, J ;
Motohisa, J ;
Fukui, T .
APPLIED PHYSICS LETTERS, 2005, 86 (21) :1-3
[18]   Photonic crystal nanocavity laser with a single quantum dot gain [J].
Nomura, Masahiro ;
Kumagai, Naoto ;
Iwamoto, Satoshi ;
Ota, Yasutomo ;
Arakawa, Yasuhiko .
OPTICS EXPRESS, 2009, 17 (18) :15975-15982
[19]   Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser [J].
Nozaki, Kengo ;
Kita, Shota ;
Baba, Toshihiko .
OPTICS EXPRESS, 2007, 15 (12) :7506-7514
[20]   Plasmon lasers at deep subwavelength scale [J].
Oulton, Rupert F. ;
Sorger, Volker J. ;
Zentgraf, Thomas ;
Ma, Ren-Min ;
Gladden, Christopher ;
Dai, Lun ;
Bartal, Guy ;
Zhang, Xiang .
NATURE, 2009, 461 (7264) :629-632